@walvoil

IEC 61131-3 programming of the CED400W

WARNING

The User is required to properly verify and test that the Software is correctly working within the specific scope of its application and under the actual configuration of the operating system in use. The Software will perform in substantial conformance with the documentation supplied with the Software when used with the indicated hardware and operating system configuration.

The User is required to verify the accuracy of the installation of the libraries on the control units programmed with the Software and the reliability of their operating system. The manufacturer and/or the distributor is not liable for: (i) the incorrect installation of the libraries on the control units, as well as (ii) an installation which is not conforming with the requirements of the control units, and (iii) any other deviations from the recommended use of the Software and of the operating system, including but not limited to virus, third parties installations, and any other modifications affecting the correct and recommended use of the Software.

The SOFTWARE is provided "AS IS" WITHOUT WARRANTY OF ANY KIND EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE other than those expressly provided under proper installation by a proper experienced User. ALL RISKS OF QUALITY AND PERFORMANCE OF THE outcome of the SOFTWARE REMAIN WITH the User.

The User is solely responsible for programming the control units through the use of the libraries and is required to verify the compliance with any possible limitation in the use of the devices in which the libraries are installed.

IN NO EVENT will the manufacturer, its employees, distributors, directors or agents be liable for any direct or indirect damage or other liability arising from the use or inability to use the Software, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF BUSINESS OR OPPORTUNITY OR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL OR EXEMPLARY DAMAGES, INCLUDING LEGAL FEES, ARISING FROM SUCH USE OR INABILITY TO USE THE PROGRAM, EVEN IF the manufacturer or an authorized licensor dealer, distributor or supplier has been advised of the possibility of such damages, or for any claim by any other party. Since SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR THE LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, IN SUCH STATES OR JURISDICTIONS, the manufacturer's and/or distributor's LIABILITY SHALL BE LIMITED TO THE EXTENT PERMITTED BY LAW.

Additional information

This catalogue shows the product in the standard configurations. Please contact our Sales Dpt. for more detailed information or special requests.

WARNING!

All specifications of this catalogue refer to the standard product at this date. Walvoil, oriented to a continuous improvement, reserves the right to discontinue, modify or revise the specifications, without notice.

WALVOIL IS NOT RESPONSIBLE FOR ANY DAMAGE CAUSED BY AN INCORRECT USE OF THE PRODUCT.

2nd edition May 2021

-Index

1. Document overview
- 1.1 Copyright
- 1.2 History releases of the document
- 1.3 Warning highlights
2. Safety instructions
- 2.1 System integrator knowledge requirements
- 2.2 Set-up behaviors of the controller
3. Hardware description
- 3.1 Connectors
- 3.2 Hardware configuration
- 3.3 Block Diagram
- 3.4 INPUT_ANALOG Driver (Voltage Supply)
- 3.5 INPUT_ANALOG Driverpag. 9
- 3.6 INPUT_DIGITAL Driver
- 3.7 HSD_CHANNEL Driver
- 3.8 LSD_CHANNEL Driver
- 3.9 +5V Output
- 3.10 CAN Driver
- 3.11 EEPROM memory
4. Software description
- 4.1 PLC Software
- 4.1.1 Hardware Drivers
- 4.1.1.1 Input
- 4.1.1.1.1 INPUT_ANALOG
- 4.1.1.1.2 FREQUENCY_PERIODpag. 17
- 4.1.1.2 Output
- 4.1.1.2.1 OUTPUT_DIGITAL
- 4.1.1.2.2 OUTPUT_DIGITAL_LSD
- 4.1.1.2.3 PWM1000
- 4.1.1.2.4 DITHER_CONTROL
- 4.1.1.2.5 OUTPUT_CURRENT
- 4.1.1.2.6 PID_CURRENT
- 4.1.1.2.7 OUT_SECTION_CURRENT_CONTROL
- 4.1.2 Utility Functions
- 4.1.2.1 BLINK
- 4.1.2.2 EXTRACT
- 4.1.2.3 LIN_TRAFO
- 4.1.2.4 LIN_TRAFO_SAT
- 4.1.2.5 PACK
- 4.1.2.6 PUTBIT
- 4.1.2.7 SWITCH
- 4.1.2.8 UNPACK

1. Document Overview

This document is the manual for the system integrator, with the programming guidelines for the CED400W control unit. The manual gives to the system integrator all the hardware and software information useful to write the custom software, implementing the functionality requested by the application.

High attention is dedicated to the software construction, that has to be robust and safe, not forgetting the simplicity and the easy maintenance.

The PHC STUDIO Integrated Development Environment supports all the five programming languages defined by the IEC 61131-3 standard. The software libraries available for this tool are described in the document.

PHC STUDIO splash screen image

Refer to the PHC STUDIO Integrated Development Environment, code DCDWIDE001 (English), to understand how the tool workspace is organized, and discover all the potentialities of the tool.

1.1 Copyright

© All the rights are reserved by WALVOIL S.p.A. No part of this manual may be reproduced and used without the consent of WALVOIL S.p.A.

1.2 History releases of the document

Date	Argument	New release
2015 September	Complete User Manual	V15.01 (first release)

History releases of the document

1.3 Warning highlights

A couple of warning highlights, WARNING and NOTICE, are used to put in evidence programming suggestions, the non-safe programming, the improper usage, or the non-correct installation of the control unit CED400W.

Please, pay extreme attention to these warning highlights.

WARNING

Cautions have to be taken to avoid death or serious injuries to the operators or the people that operate in the machine working area.

Damage of the control unit CED400W parts my be expected also.

NOTICE

For the proper usage of the control unit CED400W the suggestion has to be taken into consideration.

Warning highlights

2. Safety instructions

2.1 System integrator knowledge requirements

This document is intended for people with proven knowledge in programming and controlling technology.

These people must be properly trained and already have matured experience in-field.

In the applications they are going to serve, they have to be able to see and calculate risks to avoid hazards, that may be caused during the operation or the maintenance of a product.

2.2 Set-up behaviors of the controller

This document contains instructions about the correct and safe programming and handling of the control unit CED400W. Read this document to understand which are the proper installation and operating conditions for the control unit CED400W. Adhere to the safety instructions, use all the safety features and redundancy options available by the control unit CED400X, to improve the system safety and reduce the risk of unwanted movements and non-safe actuations on the machine.

3. Hardware description

A detailed hardware description is provided for the control unit CED400W.

All the I/O interface ports are described through a schematic block diagram, whose main electrical characteristics are put in evidence to understand which are the maximum performances obtainable through the hardware.

The diagnostic capabilities of these blocks and the installation precautions to be observed are discussed also.

3.1 Connectors

The interface to the CED400W is provided through two main connectors

- D1 connector (Grey) for the input signals,
- D2 connector (Black) for the output signals.

See below the pin numbering of these two connectors (system integrator view).

CED400W, D1 and D2 connectors (system integrator view)

Refer to the catalogue D1WWEE01E for more detailed information about connectors part numbers and mating parts.

3.2 Hardware configuration

A few pins on the interface connectors of the control unit CED400W can have multiple functionalities.

The pin functionality is defined through its hardware configuration.

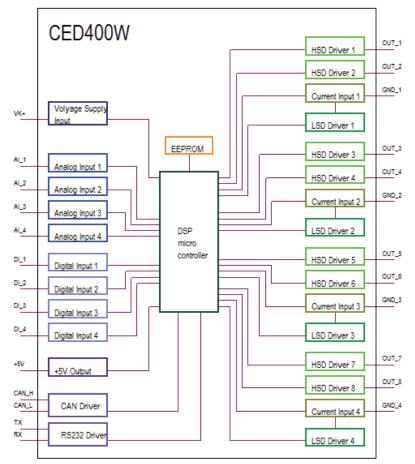
The hardware configuration is not modifiable through the application software.

Four standard hardware are available for the control unit CED400W.

The system integrator has to select the hardware able to manage the signals in the application, depending by their type and number.

CE	Ð	C	AN	ana	alog input	:	digital input	digital	output	sensor supply
part number	application software	port	120R	Type F (0,5 ÷4,5V	Type F (0÷VK)	Temp.	0/VK	HSD	LSD	5V
183337025	PHC400F	0	0	4	4	0	4	8	4	0
183337033	FAN DRIVE	1	0	0	0	4	6	4	2	1
183337037	PHC400C	1	0	4	4	0	2	8	4	0
183337046	PHC401C	1	0	4	4	0	1	8	4	1

CED400W default hardware configurations

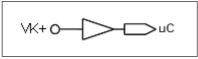

See in the next page the complete list of the hardware with the connectors pin-out functionality in details.

	1833	3702!	5		1833	3703	3		1833	3703	7		1833	3704	6
D1 0	connector	D2 c	onnector	D1 c	connector	D2 c	onnector	D1 0	connector	D2 c	onnector	D1 0	connector	D2 c	onnector
pin	function	pin	function	pin	function	pin	function	pin	function	pin	function	pin	function	pin	function
1	VK+	1	OUT_8	1	VK+	1	-	1	VK+	1	OUT_8	1	VK+	1	OUT_8
2	AI_4	2	OUT_2	2	AI_4	2	OUT_2	2	AI_4	2	OUT_2	2	AI_4	2	OUT_2
3	AI_3	3	OUT_4	3	AI_3	3	OUT_4	3	AI_3	3	OUT_4	3	AI_3	3	OUT_4
4	DI_1	4	OUT_3	4	DI_1	4	OUT_3	4	DI_1	4	OUT_3	4	5V_EXT1	4	OUT_3
5	RX	5	OUT_6	5	RX	5	DI_3	5	RX	5	OUT_6	5	RX	5	OUT_6
6	DI_3	6	OUT_5	6	CAN_L	6	DI_4	6	CAN_L	6	OUT_5	6	CAN_L	6	OUT_5
7	DI_4	7	GND_3	7	CAN_H	7	DI_6	7	CAN_H	7	GND_3	7	CAN_H	7	GND_3
8	ТХ	8	GND_2	8	ТХ	8	GND_2	8	ТХ	8	GND_2	8	ТХ	8	GND_2
9	DI_2	9	GND_1	9	DI_2	9	GND_1	9	DI_2	9	GND_1	9	DI_2	9	GND_1
10	AI_1	10	GND_4	10	AI_1	10	DI_5	10	AI_1	10	GND_4	10	AI_1	10	GND_4
11	AI_2	11	OUT_1	11	AI_2	11	OUT_1	11	AI_2	11	OUT_1	11	AI_2	11	OUT_1
12	VB-	12	OUT_7	12	VB-	12	5V_EXT	12	VB-	12	OUT_7	12	VB-	12	OUT_7

CED400W default hardware configurations, connectors pin-out and functionality

3.3 Block Diagram

The control unit CED400W can be schematized into a simple block diagram to let the system integrator understand which are the main peripherals available and their number



CED400W, complete block diagram for the hardware configuration

3.4 INPUT_ANALOG Driver (Voltage Supply)

This INPUT_ANALOG Driver provides the voltage value of the power supply source VK+.

In the picture below, the INPUT_ANALOG Driver is schematized.

INPUT_ANALOG Driver for the Voltage Supply measure, simplified schema

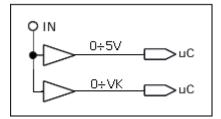
The power supply input VK+ is connected to the microcontroller μ C through an hardware amplifier made of a pull-down resistor and a built-in protection circuit.

The measured value

- is useful for the Power Supply voltage monitoring, as general information,
- is useful to prevent system malfunctioning at low battery supply voltages,
- is useful for the ratiometric joystick value calculus,
- is not affected by the protection circuitries of the Power Supply hardware.

NOTICE

1. The application software must handle the input value measured on the input pin VK+ to properly manage any input signal fault condition.


WARNING

- 1. Do not connect any inductive load in parallel on the input pin VK+ (load connected between VK+ and GND). This may cause an irreversible damage of the input channel hardware. (example of inductive load : electro-hydraulic coil, relay coil, clacson coil).
- 2. Provide an external 7.5A fuse on the power line VK+ to not exceed the maximum load of the power input pin VK+.

3.5 INPUT_ANALOG Driver

Each INPUT_ANALOG Driver provides the voltage value of the signal IN on the correspondent input pin.

In the picture below, the generic INPUT_ANALOG Driver is schematized.

INPUT_ANALOG Driver, simplified schema

For the generic Analog Input channel

• Two separate hardware circuits work in parallel on the input signal connected to the input pin IN o circuit for the input signal range of $0\div 5V$,

o circuit for the input signal range of $0 \div VK$,

o dynamics 5ms for both the circuits.

 \bullet The input pin IN is connected to the microcontroller μC through an hardware amplifier, made of o pull-down resistor,

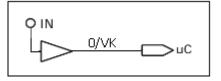
o built-in protection circuit (overvoltage).

NOTICE

- **1.** The application software must select the proper input circuit depending by the input signal range and properly manage any input signal fault condition.
- 2. Thanks to the pull-down resistor, if no signal is connected to the input pin IN, the μ C will measure 0V.
- 3. Thanks to the built-in protection circuit, any overvoltage on the input pin IN is limited into the range defined by the hardware circuitry, 5V or VK, preventing any damage of the μ C. During an overvoltage saturation the μ C will measure 5V or VK.

WARNING

1. Do not connect any inductive load in parallel on the input pin IN (load connected between IN and GND).


This may cause an irreversible damage of the input channel hardware. (example of inductive load : electro-hydraulic coil, relay coil, clacson coil).

3.6 INPUT_DIGITAL Driver

Each INPUT_DIGITAL Driver provides the logical level (0 or VK) of the signal on the correspondent input pin IN.

In the picture below, the generic INPUT_DIGITAL Driver is schematized.

INPUT_DIGITAL Driver, simplified schema

For the generic Digital Input channel,

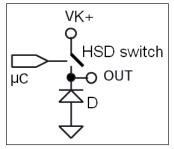
- One hardware circuit
- o input signal range of 0÷VK,
- o dynamics 5ms.
- The input pin IN is connected to the microcontroller μ C through an hardware amplifier, made of
- o NPN interface with a pull-down resistor,
- o built-in protection circuit.

NOTICE

- 1. Thanks to the NPN interface and the pull-down resistor, if no signal is connected to the input pin IN, the μ C will trigger the logical level 0 (OFF).
- 2. Thanks to the built-in protection circuit, any overvoltage on the input pin IN is limited into the range defined by the hardware circuitry, preventing any damage of the μ C. During an overvoltage saturation the μ C will trigger the logical level 1 (ON).

WARNING

1. Do not connect any inductive load in parallel on the input pin IN (load connected between IN and GND).


This may cause an irreversible damage of the input channel hardware. (example of inductive load : electro-hydraulic coil, relay coil, clacson coil).

3.7 HSD_CHANNEL Driver

The HSD_CHANNEL Driver drives current on the correspondent output pin OUT. The current flow direction is from VK+ to OUT.

In the picture below, the generic HSD_CHANNEL Driver is schematized.

HSD_CHANNEL Driver, simplified schema

A few protection features are available

- Under the microcontroller μ C control, the VK+ line of each HSD Switch is connected to the VK through a common series enable switch HSD_ENABLE.
- Under the microcontroller μ C control, the power line VK+ is connected to OUT through the HSD switch.
- The HSD switch protection diode D is integrated in the hardware. It protects the HSD switch itself against the inductive load switch-off action.
- The HSD switch is protected against short circuits to GND of the OUT pin. An automatic thermal shut-down of the switch is executed when the fault event is detected.
- A built-in hardware+software diagnostic is provided. This diagnostic is always implemented and running. The microcontroller μ C turns OFF the HSD switch, avoiding any hardware damage.

NOTICE

1. Even if the hardware is "self-protected", the application software must handle the built-in diagnostic to properly manage the output port fault conditions.

WARNING

1. Do not interrupt the connection between the output pin OUT and the inductive load through an additional external series switch. The internal protection diode D will have no effect against the voltage spikes produced by the inductive load switch-off. This may cause an irreversible damage of all the electronic devices in the system, CED400W included. (example of inductive load : electro-hydraulic coil, relay coil, clacson coil).

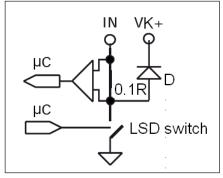
2. Do not drive loads greater than 2A to not exceed the maximum output load capability of the pin.

3.8 LSD_CHANNEL Driver

Each LSD_CHANNEL Driver channel enables the current feedback control on the correspondent output pin IN. The current flow direction is from IN to the control unit internal ground connection GND.

Two main features

Performances


Through the measure of the load current, it's possible to compensate the current itself against the

- o load resistance variations (temperature),
- o supply voltage fluctuations (VK+).
- Safety

The LSD_CHANNEL Driver implements redundancy on the output current control.

The current to the load can be interrupted not only through the HSD_CHANNEL Driver, it can be interrupted through the LSD_CHANNEL Driver also.

In the picture below, the generic LSD_CHANNEL Driver is schematized.

LSD_CHANNEL Driver, simplified schema

A few protection features are available

- \bullet Under the microcontroller μC control, the input line IN is connected to GND through the LSD switch.
- The LSD switch protection diode D is integrated in the hardware. It protects the LSD switch against the inductive load switchoff action.
- The LSD switch is protected against short circuits to VK+ of the IN pin. This fault causes a current overload on both the current measurement resistor 0.1R and on the LSD switch itself.
- A built-in hardware+software diagnostic is provided. This diagnostic is always implemented and running. The microcontroller μ C turns OFF the LSD switch, avoiding any hardware damage.

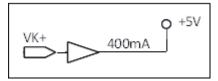
NOTICE

1. Even if the hardware is "self-protected", the application software must handle the built-in diagnostic to properly manage the output port fault conditions.

WARNING

1. Do not interrupt the connection between the output pin OUT and the inductive load through an additional external series switch. The internal protection diode D will have no effect against the voltage spikes produced by the inductive load switch-off.

This may cause an irreversible damage of all the electronic devices in the system, CED400W included.


(example of inductive load : electro-hydraulic coil, relay coil, clacson coil).

2. Do not drive loads greater than 2A to not exceed the maximum output load capability of the pin.

3.9 +5V Output

The +5V Output channel provides a stabilized 5V output for sensors and/or joysticks supply.

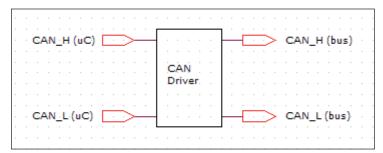
In the picture below, the +5V Output channel is schematized.

+5V Output, simplified schema

A few protection features are available

- The output is protected against short-circuits to GND and VK+.
- The maximum load capability is 400mA, resistive load.

WARNING


1. Do not connect any inductive load in parallel on the output (load connected between +5V and GND).

This may cause an irreversible damage of the output channel hardware. (example of inductive load : electro-hydraulic coil, relay coil, clacson coil).

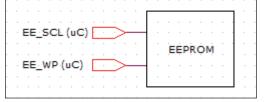
3.10 Can Driver

There is one CAN Driver port.

In the picture below, the CAN Driver port is schematized.

CAN Driver, simplified schema

The 120Ω termination resistor is not provided on the bus side (bus).


3.11 EEPROM memory

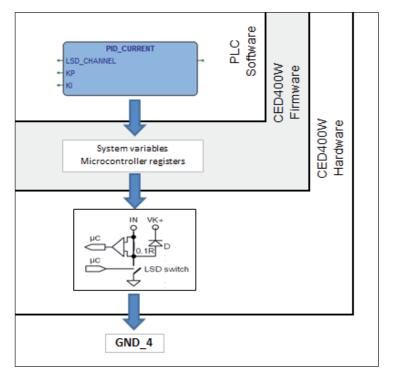
There is one external EEPROM memory.

In the picture below, the EEPROM memory hardware/access is schematized. The EEPROM size is 1K byte.

Here will be stored the persistent working parameters of the application.

The non persistent ones will be stored into the microcontroller µC RAM memory.

EEPROM, simplified schema


D1WWTE04E

4. Software description

Through the PHC STUDIO the system integrator writes the PLC software, correspondent to the desired application functionality, combining the input signals to properly control the outputs of the CED400W electronic control unit. The PLC software, based on the IEC61131-3 standard programming languages, is the highest software layer of the project. It works with the software functions available to control the I/O hardware of the CED400W electronic control unit : CED400W firmware. The CED400W firmware is the lowest software layer, not accessible by the system integrator.

A simple schema of these different layers is represented in the picture below.

PLC software layers : LSD_CHANNEL control on GND_4, through the PID_CURRENT function

4.1 PLC Software

4.1.1 Hardware Drivers

4.1.1.1 Input

4.1.1.1.1 INPUT_ANALOG

Name:	INPUT_ANALOG
Unit type:	FUNCTION (F)
Library:	CED400W.lib
Symbol:	
⊷ V_CHANNEL ↓ V_MODE ↓ V_K	PUT_ANALOG

INPUT_ANALOG function symbol

Description:

The INPUT_ANALOG function provides the analogue voltage value of the signal on the selected input channel V_CHANNEL. The measure is standardized through a list of conversion modes V_MODE. The conversion mode can also be custom-defined, the input range is specified by the V_K input parameter.

Input parameters:

V_CHANNEL: input channel on the control unit D1 connector,	V	CHANNEL:	input	channel	on the	control	unit D1	connector,
--	---	-----------------	-------	---------	--------	---------	---------	------------

Input	Туре	Dec	Hex	Label	Description		
		4	04	AI_1_5V	Input channel 1, 0÷5V hardware		
		8	08	AI_1_5K	Input channel 1, 0÷VK hardware		
		5	05	AI_2_5V	Input channel 2, $0\div5V$ hardware		
		9	09	AI_2_VK	Input channel 2, 0÷VK hardware		
		6	06	AI_3_5V	Input channel 3, $0\div5V$ hardware		
	BYTE	BYTE	BYTE	10	0A	AI_3_VK	Input channel 3, $0\div VK$ hardware
				7	07	AI_4_5V	Input channel 4, 0÷5V hardware
V_CHANNEL				11	0B	AI_4_VK	Input channel 4, 0÷VK hardware
			4	04	T_1	Input channel 1, 0÷120°C hardware	
				5	05	T_2	Input channel 2, 0÷120°C hardware
		6	06	T_3	Input channel 3, $0\div120^{\circ}$ C hardware		
		7	07	T_4	Input channel 4, $0\div120^\circ$ C hardware		
		15	0F	VJ	Input channel, 5V external supply		
		2	02	VK	Power supply channel, 0÷32V hardware		

INPUT_ANALOG function: V_CHANNEL description

Input	Туре	Dec	Hex	Label	Description	Full Scale	Label
		0	00	OFF	OFF	-	-
		1	01	ADC	Uncalibrated raw (ADC 12bit)	0÷32767	12bit
		2	02	VOLT_5V	Referred to 5000mV	0÷5000	mV
		3	03	VOLT_VK	Referred to 32000mV	0÷32000	mV
V_MODE	BYTE	4	04	RATIO_VK	Ratiometric, referred to VK	0÷1000	‰
		5	05	RATIO_VJ	Ratiometric, referred to VJ	0÷1000	‰
		6	06	RATIO_5V	Ratiometric, referred to 5V	0÷1000	‰
		10	0A	K_CONVERSION	Custom conversion range	-	-

V_MODE: conversion and representation of the measure of the input signal,

INPUT_ANALOG function: V_MODE description

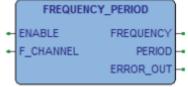
V_K: custom conversion (full scale)

This input parameter is significant only if K_CONVERSION is selected in V_MODE.

Input	Туре	Dec	Hex	Label	Description
		4950	1356	K_05V	Output from 0 to 5000 mV
	UINT	9900	26AC	K_10V	Output from 0 to 10000 mV
V_K	UINI	32560	7F30	K_32V	Output from 0 to 32000 mV
		3000	0BB8	K_03V	Output from 0 to 3000 mV
TNIDUT ANIAL		11111			

INPUT_ANALOG function: V_K description

Output parameters:


(function output): error byte, representing the status of the control.

	Output	Туре	Dec	Hex	Label	Description
	(function output)	UINT	-	-	(none)	Output value according to V_MODE
II	IPUT_ANALOG functi	on: Output d	description	(OUT)		

4.1.1.1.2 FREQUENCY_PERIOD

Name:	FREQUENCY_PERIOD
Unit type:	FUNCTION BLOCK (FB)
Library:	CED400W.lib

Symbol:

FREQUENCY_PERIOD function symbol

Description:

The FREQUENCY_PERIOD function measures the period duration of the signal on the selected channel F_CHANNEL. The period is measured in ms, the input range is $0.2 \div 33.3$ ms.

The period is measured between two successive rising edges of the input signal.

The frequency of the input signal is then calculated.

The frequency is expressed in Hz, the input range is $30 \div 5000$ Hz.

Input parameters:

ENABLE: enable of the period time measure of the input signal

Input	Туре	Dec	Hex	Label	Description
ENABLE	BOOL	-	-	F_EN_YES	TRUE: measurement enabled
LNADLL	BOOL	-	-	F_EN_NO	FALSE: measurement not enabled

FREQUENCY_PERIOD function: ENABLE description

F_CHANNEL: frequency input channel on the control unit D1 connector

Input	Туре	Dec	Hex	Label	Description
F CHANNEL	BYTE	0	00	F_DI_1	Frequency channel 1, 30÷5000Hz hardware
F_CHANNEL	DTIL	1	01	F_DI_2	Frequency channel 2, 30÷5000Hz hardware

FREQUENCY_PERIOD function : F_CHANNEL description

Output parameters:

FREQUENCY: frequency of the input signal.

The measure is expressed in Hz, into the range $30 \div 5000$ Hz.

	Output	Туре	Dec	Hex	Label	Description
	FREQUENCY	UINT	-	-	(none)	Frequency of the input signal in (Hz)
F	REQUENCY_PERIOL	function : I	REQUENC	Y descript	ion	

PERIOD: period of the input signal.

The measure is expressed in ms, into the range 0.2÷33.3ms.

Output	Туре	Dec	Hex	Label	Description
PERIOD	UINT	-	-	(none)	Period of the input signal in (ms)
FREQUENCY_PERIOL	D function : I	PERIOD des	scription		

ERROR_OUT: diagnosis of the status of the conversion.

Input	Туре	Dec	Hex	Label	Description
		0	00	ERR_NO	No Error
	BYTE	1	01	ERR_FREQ_CH	Bit 0: Error F_CHANNEL (not correct)
ERROR_OUT	DTIE	2	02	ERR_FREQ_H	Bit 2: Error frequency TOO HIGH
		4	04	ERR_FREQ_L	Bit 3: Error frequency TOO LOW

FREQUENCY_PERIOD function : ERROR_OUT description

4.1.1.2 Output

4.1.1.2.1 OUTPUT_DIGITAL Name: OUTPUT_DIGITAL Unit type: FUNCTION (F) Library: CED400W.lib Symbol: OUTPUT_DIGITAL

OUTPUT_DIGITAL function symbol

Description:

The OUTPUT_DIGITAL function, through the input parameter VALUE, turns ON or OFF the selected HSD_CHANNEL. When the channel is turned ON, inside the control unit, the VK line is connected to the output through the HSD circuitry.

Input parameters:

HSD_CHANNEL: HSD output channel

The HSD_ENABLE is a 'master switch' that enables all the HSD_CHANNEL (via hardware).

This HSD_ENABLE has to be turned-ON to work with the HSD_CHANNELs

Input	Туре	Dec	Hex	Label	Description
		0	00	OUT_1	HSD channel 1
		1	01	OUT_2	HSD channel 2
		2	02	OUT_3	HSD channel 3
		3	03	OUT_4	HSD channel 4
HSD_CHANNEL	BYTE	4	04	OUT_5	HSD channel 5
		5	05	OUT_6	HSD channel 6
		6	06	OUT_7	HSD channel 7
		7	07	OUT_8	HSD channel 8
		8	08	HSD_ENABLE	HSD channels enable

OUTPUT_DIGITAL function: HSD_CHANNEL description

VALUE: turn-ON or	turn-OFF	commands	for the HSD	CHANNEL
		commanus	IOI LIE HOD	CHANNEL

Input	Туре	Dec	Hex	Label	Description
VALUE	BOOL	-	-	(TRUE)	HSD turn-ON
VALUL	BOOL	-	-	(FALSE)	HSD turn-OFF (floating state)

OUTPUT_DIGITAL function: VALUE description

Output parameters:

(function output): error byte, representing the status of the control.

Output	Туре	Dec	Hex	Label	Description					
(function output)	(function output) BYTE	0	00	ERR_NO	No Error					
(Turiction output)		1	01	ERR_HSD_CH	Bit 0: Error HSD_CHANNEL (not correct)					
OUTPUT_DIGITAL fui	OUTPUT_DIGITAL function: function output (ERROR) description									

4.1.1.2.2 OUTPUT_DIGITAL_LSD

Name:OUTPUT_DIGITAL_LSDUnit type:FUNCTION BLOCK (FB)Library:CED400W.libSymbol:

OUTPUT_DIGITAL_LSD

- INIT ERROR_OUT -LSD_CHANNEL

- VALUE

OUTPUT_DIGITAL function symbol

Description:

The OUTPUT_DIGITAL_LSD function, through the input parameter VALUE, turns ON or OFF the selected LSD_CHANNEL. When the channel is turned ON, inside the control unit, the GND line is connected to the output through the LSD circuitry.

Input parameters:

INIT: initializes the function block.

The value of this input parameter has to be active (TRUE) at the first main cycle of the application software, then reset (FALSE) at the successive cycle, then maintained reset (FALSE).

Input	Туре	Dec	Hex	Label	Description
INIT BOOL	BOOL	-	-	(TRUE)	The function block is initialised
11111	BOOL	-	-	(FALSE)	The function block is not initialised

OUTPUT_DIGITAL_LSD function: INIT description

LSD_CHANNEL: LSD (output) channel.

Input	Туре	Dec	Hex	Label	Description	
		0	00	GND_1	LSD channel 1, with current control	
LSD CHANNEL	DVTE	1	01	GND_2	LSD channel 2, with current control	
LSD_CHAININEL	BYTE	DITE	2	02	GND_3	LSD channel 3, with current control
		3	03	GND_4	LSD channel 4, with current control	
OUTPUT DICITAL L						

OUTPUT_DIGITAL_LSD: LSD_CHANNEL description

VALUE: turn-ON or turn-OFF commands for the LSD_CHANNEL

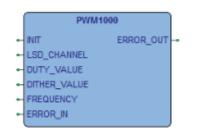
Input	Туре	Dec	Hex	Label	Description
	POOL	-	-	(TRUE)	HSD turn-ON
VALUE	BOOL	-	-	(FALSE)	HSD turn-OFF (floating state)

OUTPUT_DIGITAL function: VALUE description

Output parameters:

ERROR_OUT: error byte, representing the status of the control.

Input	Туре	Dec	Hex	Label	Description
	BYTE	0	00	ERR_NO	No Error
ERROR_OUT	DTIC	1	01	ERR_LSD_CH	Bit 0: Error LSD_CHANNEL (not correct)
OUTPUT DIGITAL L	SD function	FRROR	I IT descrir	ntion	


OUTPUT_DIGITAL_LSD function: ERROR_OUT description

4.1.1.2.3 PWM1000

Name:PWM1000Unit type:FUNCTION BLOCK (FB)Library:CED400W.lib

Symbol:

PWM100 function symbol

Description:

The PWM1000 function configures the PWM driver and the DITHER control for the selected LSD_CHANNEL. The PWM carrier is the real physical control of the LSD_CHANNEL hardware. The DITHER modulation is an over imposed frequency control on the PWM carrier.

Each LSD_CHANNEL can be configured with its own and independent set of parameters.

The function output is an error information ERROR_OUT, representing the status of the control.

Input parameters:

INIT: initializes the function block.

The value of this input parameter has to be active (TRUE) at the first main cycle of the application software, then reset (FALSE) at the successive cycle, then maintained reset (FALSE).

Input	Туре	Dec	Hex	Label	Description
INIT	BOOL	-	-	(TRUE)	The function block is initialised
		-	-	(FALSE)	The function block is not initialised

PWM1000 function : INIT description

LSD_CHANNEL: LSD (output) channel.

Input	Туре	Dec	Hex	Label	Description
		0	00	GND_1	LSD channel 1, with current control
LSD_CHANNEL BYTE	DVTE	1	01	GND_2	LSD channel 2, with current control
	DTIE	2	02	GND_3	LSD channel 3, with current control
		3	03	GND_4	LSD channel 4, with current control

PWM1000 function : LSD_CHANNEL description

DUTY_VALUE: duty-cycle of the PWM carrier.

The resolution of the duty-cycle DUTY_VALUE of the PWM carrier is 1000.

The frequency of the PWM carrier is fixed @20KHz (not modifiable by the application software)

Input	Туре	Dec	Hex	Label	Description
		0	0000	(none)	0 ∞ (NULL) duty-cycle of the PWM carrier
		1	0001	(none)	1 ∞ duty-cycle of the PWM carrier
DUTT_VALUE	DUTY_VALUE UINT	-	-	(none)	-
		1000	03E8	(none)	1000 $\%$ (FULL) duty-cycle of the PWM carrier

PWM1000 function : DUTY_VALUE description

DITHER_VALUE: additional part of duty-cycle of the PWM carrier A built-in control verifies that

- DUTY_VALUE + DITHER_VALUE < 1000 ‰ => limited at 1000 ‰,
- DUTY_VALUE DITHER_VALUE > 0 ‰ => limited at 0 ‰

Input	Туре	Dec	Hex	Label	Description
		0	0000	(none)	0 ‰ additional duty-cycle
	UINT	1	0001	(none)	1 ‰ additional duty-cycle
DITHER_VALUE	UINT	-	-	-	-
		1000	03E8	(none)	1000 ‰ additional duty-cycle

PWM1000 function: DITHER_VALUE description

FREQUENCY: frequency of the DITHER modulation.

A typical value for FREQUENCY is 100Hz.

A built-in control verifies that

- FREQUENCY < 0Hz => limited at 0Hz,
- FREQUENCY > 300Hz => limited at 300Hz.

Input	Туре	Dec	Hex	Label	Description
	FREQUENCY UINT	0	0000	(none)	DITHER frequency 0Hz
		1	0001	(none)	DITHER frequency 1Hz
FREQUENCY		-	-	-	-
		300	012C	(none)	DITHER frequency 300Hz
DIV/M1000 fumations		deceription	-		

PWM1000 function: FREQUENCY description

ERROR_IN: external `enable' of the function.

If the input value is NOT NULL the function is turned-OFF and the DUTY_VALUE is overwritten by 0.

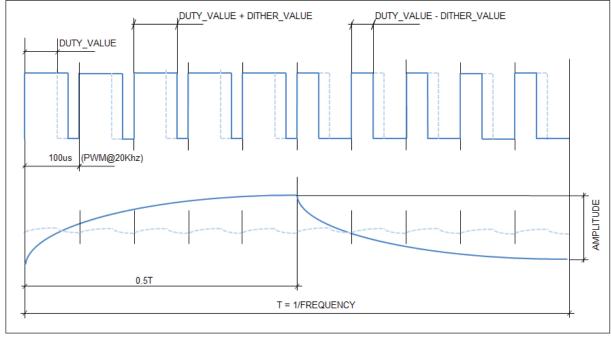
Input	Туре	Dec	Hex	Label	Description
	BYTE	0	00	ERR_NO	No error, the function block is enabled
		1	01	(none)	
ERROR_IN		-	-	-	The function block is not enabled.
	255	FF	(none)		

PWM1000 function: ERROR_IN description

Output parameters:

ERROR_OUT: error information, representing the status of the function.

Output	Туре	Dec	Hex	Label	Description
		0	00	ERR_NO	No Error
		1	01	ERR_LSD_SCC	Bit 0: LSD_CHANNEL short circuit
		2	02	(none)	Bit 1: (not used)
		4	04	(none)	Bit 2: (not used)
		8	08	(none)	Bit 3: (not used)
ERROR_OUT	BYTE	16	10	ERR_LSD_PWM	Bit 4: LSD_CHANNEL already used in PWM1000
		32	20	ERR_LSD_OSC	Bit 5
		64	40	(none)	Bit 6: LSD_CHANNEL already used in OUT_SECTION_CURRENT_CONTROL
		128	80	ERR_LSD_CH	Bit 7


PWM1000 function: ERROR_OUT description

Output description:

The following diagram is a short description of the function control.

The light-blu dot line is the effect of the duty-cycle DUTY_VALUE (only) on the PWM carrier and the DITHER control (no any DITHER_VALUE is applied). The 'triangular' ripple on the output (light-blu dot line) is practically 'flat', no vibration is added to the load (typically an electro-hydraulic reducing valve).

Applying the DITHER_VALUE to the duty-cycle DUTY_VALUE, it's possible to generate on the output line a 'triangular' DITHER, at the frequency FREQUENCY, with a ripple of amplitude AMPLITUDE. This DITHER_VALUE is added to the DUTY_VALUE in the first half part of the period T. This DITHER_VALUE is subtracted to the DUTY_VALUE in the second half part of the period T. This will introduce a vibration on the load, increasing the performances of the control. The AMPLITUDE is non controllable by the function, it is load dependent. The period T is defined as T=1/FREQUENCY (see FREQUENCY).

PWM1000 function: function diagram

NOTICE

1. The PWM1000 function is the basic driver of the LSD_CHANNEL.

The PWM carrier with the DITHER modulation can be intended as an 'open-loop' control of the output. No compensation of the current driven to the load is implemented by the function. The system integrator has to add this control if requested by the application :

- call the OUTPUT_CURRENT function to measure the current on the LSD_CHANNEL,
- call the PID_CURRENT function to implement the current compensation control.

4.1.1.2.4 DITHER_CONTROL

DITHER_CONTROL Name: Unit type: FUNCTION (F) CED400W.lib Library:

Symbol:

DITHER_CONTROL	
- LSD_CHANNEL	-
- DITHER_ON	
- FREQUENCY	
- AMPLITUDE	
- AMPLITUDE_PERCENTAGE	

DITHER_CONTROL function symbol

Description:

The DITHER_CONTROL function configures the DITHER control for the selected LSD_CHANNEL.

The DITHER control has to be enabled through DITHER_ON.

The FREQUENCY, the AMPLITUDE and the AMPLITUDE_PERCENTAGE can be defined to characterize the DITHER control. It is possible to set different DITHER parameters for each LSD_CHANNEL.

The function output is an error byte, representing the status of the control.

Input parameters:

LSD_CHANNEL: LSD (output) channel	el.
-----------------------------------	-----

	()				
Input	Туре	Dec	Hex	Label	Description
		0	00	GND_1	LSD channel 1, with current control
	BYTE	1	01	GND_2	LSD channel 2, with current control
LSD_CHANNEL	DTIE	2	02	GND_3	LSD channel 3, with current control
		3	03	GND_4	LSD channel 4, with current control

DITHER_CONTROL function: LSD_CHANNEL description

DITHER_ON: DITHER control enable.

Input	Туре	Dec	Hex	Label	Description
	DITHER_ON BYTE	0	00	DITHER_OFF	DITHER disabled
DITTER_ON		1	01	DITHER_ON	DITHER enabled

DITHER_CONTROL function: DITHER_ON description

FREQUENCY: frequency value of the DITHER control, normally called 'low frequency PWM'. The range of permissible values is $50 \div 300$ Hz.

Input	Туре	Dec	Hex	Label	Description				
		50	0032	(none)	DITHER frequency 50Hz				
EDEOLIENCY		51	0033	(none)	DITHER frequency 51Hz				
FREQUENCY	UINT	UINT	UINI	UINT	UINI	-	-	-	-
		300	012C	(none)	DITHER frequency 300Hz				
DITHER CONTROL f	DITHER CONTROL function: EREQUENCY description								

THER_CONTROL function: FREQUENCY description

AMPLITUDE: amplitude value of the DITHER control. The range of permissible values is 0÷500 mA. The parameter is active only if AMPLITUDE_PERCENTAGE = 0 %. The amplitude is constant for all the values of CURRENT_SETPOINT. (see OUT_SECTION_CURRENT_CONTROL function)

Input	Туре	Dec	Hex	Label	Description
	UINT	0	0000	(none)	AMPLITUDE ripple 0mA
AMPLITUDE		1	0001	(none)	AMPLITUDE ripple 1mA
AMPLITODL	UINI	-	-	-	-
		500	01F4	(none)	AMPLITUDE ripple 500mA

DITHER_CONTROL function: AMPLITUDE description

AMPLITUDE_PERCENTAGE: amplitude value of the DITHER control.

The range of permissible values is $0\div90$ %.

The amplitude is a percentage of the value of CURRENT_SETPOINT.

(see OUT_SECTION_CURRENT_CONTROL function)

This means that its absolute value is greater at the values of CURRENT_SETPOINT

Input	Туре	Dec	Hex	Label	Description
		0	00	(none)	0% of CURRENT_SETPOINT
AMPLITUDE_	BYTE	1	01	(none)	1% of CURRENT_SETPOINT
PERCENTAGE	DTIC	-	-	-	-
		90	5A	(none)	90% of CURRENT_SETPOINT
DITHED CONTROL F	inction M		EDCENITA	E description	

DITHER_CONTROL function: AMPLITUDE_PERCENTAGE description

Output parameters:

(function output): error byte, representing the status of the control.

Output	Туре	Dec	Hex	Label	Description
		0	00	(none)	No Error
		1	01	(none)	Bit 0: Error wrong LSD_CHANNEL
(function output)	BYTE	2	02	(none)	Bit 1: FREQUENCY out of range
		4	04	-	Bit 2: AMPLITUDE out of range
	8	8	08	(none)	Bit 3: AMPLITUDE_PERCENTAGE out of range

DITHER_CONTROL function: function output (ERROR) description

4.1.1.2.5 OUTPUT_CURRENT

Name:	OUTPUT_CURRENT
Unit type:	FUNCTION BLOCK (FB)
Library:	CED400W.lib

Symbol:

1	OUTPUT_CURRENT					
	LSD_CHANNEL	ACTUAL_CURRENT	-			
•	DITHER_RELATED	ERROR_OUT	-			

OUTPUT_CURRENT function symbol

Description:

The OUTPUT_CURRENT function measures the current driven through the selected LSD channel. The measure is executed in the time period specified by the input parameter DITHER_RELATED. A few error events can be detected by the function, and specified in the output parameter ERROR_OUT.

Input parameters:

LSD_CHANNEL: LSD (output) channel.

Input	Туре	Dec	Hex	Label	Description
		0	00	GND_1	LSD channel 1, with current control
LSD CHANNEL	BYTE	1	01	GND_2	LSD channel 2, with current control
LSD_CHANNEL	DTIL	2	02	GND_3	LSD channel 3, with current control
		3	03	GND_4	LSD channel 4, with current control

OUTPUT_CURRENT function : LSD_CHANNEL description

DITHER_RELATED: defines the period time to be considered for the current measure. The current measured is the average value in that period.

Input	Туре	Dec	Hex	Label	Description	
	POOL	-	-	(TRUE)	One DITHER period	
DITHER_RELATED	BOOL	-	-	(FALSE)	One PWM period	
DITHER CONTROL function, DITHER ON description						

DITHER_CONTROL function: DITHER_ON description

Output parameters:

ACTUAL_CURRENT: measure of the current on the selected LSD channel

Input	Туре	Dec	Hex	Label	Description	
ACTUAL_CURRENT	UINT	-	-	(none)	Output current expressed in mA	
OUTPUT_CURRENT function : ACTUAL_CURRENT description						

ERROR_OUT: diagnosis of the status of the measure, a few errors can be detected

Output	Туре	Dec	Hex	Label	Description
	BYTE	0	00	ERR_NO	No Error
ERROR_OUT	DTIE	1	01	ERR_LSD_CH	Bit 0: Error LSD_CHANNEL (not correct)
OUTPUT CURRENT function: FRROR OUT description					

OUTPUT_CURRENT function: ERROR_OUT description

4.1.1.2.6 PID_CURRENT

Name:	PID_CURRENT
Unit type:	FUNCTION (F)
Library:	CED400W.lib
Symbol:	

PID_CURRENT	
- LSD_CHANNEL	H
• KP	
• кі	

PID_CURRENT function symbol

Description:

The PID_CURRENT function configures the PID control applied to the current driven through the selected LSD_CHANNEL. The gains KP and KI of the proportional and integral corrections of the PID control can be set as desired. For each LSD_CHANNEL the KP and KI parameters are already set to default values, the best ones for most of the applications. The function has not to be called in the application software if different values have not to be set. The function works only in conjunction with OUT_SECTION_CURRENT_CONTROL that executes the current control on the same LSD_CHANNEL.

The function output is an error byte, representing the status of the control.

Input parameters:

LSD_CHANNEL: LSD (output) channel.

Туре	Dec	Hex	Label	Description
	0	00	GND_1	LSD channel 1, with current control
DVTE	1	01	GND_2	LSD channel 2, with current control
LSD_CHANNEL BYTE	2	02	GND_3	LSD channel 3, with current control
	3	03	GND_4	LSD channel 4, with current control
	Type BYTE	0	BYTE 2 02	0 00 GND_1 1 01 GND_2 2 02 GND_3

PID_CURRENT function : LSD_CHANNEL description

KP: gain of the proportional correction of the PID control The default value is set at KP=25

Input	Туре	Dec	Hex	Label	Description
		0	00	(none)	Null proportional correction
		1	01	(none)	-
KP	UINT	-	-	-	-
КГ		25	19	(none)	Suggested gain for the proportional correction
		-	-	-	-
		100	64	(none)	Maximum proportional correction

PID_CURRENT function : KP description

$\ensuremath{\textbf{KI}}$: gain of the integral correction of the PID control

The default value is set at KI=50.

Input	Туре	Dec	Hex	Label	Description
		0	00	(none)	Null integral correction
KI	UINT	1	01	(none)	-
KI .	UINT	-	-	-	-
		50	32	(none)	Suggested gain for the integral correction
		-	-	-	-
		100	64	(none)	Maximum integral correction

PID_CURRENT function: KI description

Output parameters:

(function output): error byte, representing the status of the control.

Output	Туре	Dec	Hex	Label	Description		
	BYTE	0	00	ERR_NO	No Error		
(function output)		DVTE	DVTE	1	01	ERR_LSD_CH	Bit 0: Error LSD_CHANNEL (not correct)
(Turiction output)		2	02	ERR_KP_H	Bit 1: Error KP too High (>100)		
		4	04	ERR_KI_H	Bit 2: Error KI too High (>100)		

PID_CURRENT function : function output (ERROR) description

4.1.1.2.7 OUT_SECTION_CURRENT_CONTROL

Name:	OUT_SECTION_CURRENT_CONTROL
Unit type:	FUNCTION BLOCK (FB)
Library:	CED400W.lib

Symbol:

	OUT_SECTION_CURRENT_CONTROL							
•	INIT ERROR_OUT	-						
•	LSD_CHANNEL							
•	HSD_CHANNEL_SIDE_A							
•	HSD_CHANNEL_SIDE_B							
•	CURRENT_SETPOINT							
	EDBOD IN							

OUT_SECTION_CURRENT_CONTROL function symbol

Description:

The OUT_SECTION_CURRENT_CONTROL function controls through the two outputs HSD_CHANNEL_SIDE_A and HSD_CHANNELS_SIDE_B the two electro-hydraulic valves (typical loads) of a complete working section on an hydraulic directional valve.

For the current control, the LSD_CHANNEL is the common feedback line of the two HSD_CHANNELs.

The CURRENT_SETPOINT is the current value desired on the output, expressed in mA and with sign.

The current on the output is compensated against load and power supply voltage fluctuations

The ERROR_IN is used to turn-OFF the output lines, both the two HSDs and the common LSD.

The INIT input parameter is used to initialize the hardware structure, checking if there is any incongruence on the HSDs and LSD selection.

Input parameters:

INIT: initializes the function block.

The value of this input parameter has to be active (TRUE) at the first main cycle of the application software, then reset (FALSE) at the successive cycle, then maintained reset (FALSE).

Input	Туре	Dec	Hex	Label	Description			
TNIT	DOOL	-	-	(TRUE)	The function block is initialised			
INIT	BOOL	-	-	(FALSE)	The function block is not initialised			
OUT SECTION CURPENT CONTROL function : INIT description								

OUT_SECTION_CURRENT_CONTROL function : INIT description

LSD_CHANNEL: LSD (output) channel.

Input	Туре	Dec	Hex	Label	Description
		0	00	GND_1	LSD channel 1, with current control
LSD CHANNEL	BYTE	1	01	GND_2	LSD channel 2, with current control
LSD_CHANNEL	DTIE	2	02	GND_3	LSD channel 3, with current control
		3	03	GND_4	LSD channel 4, with current control

OUT_SECTION_CURRENT_CONTROL function : LSD_CHANNEL description

Input	Туре	Dec	Hex	Label	Description		
		0	00	OUT_1	HSD channel 1		
		1	01	OUT_2	HSD channel 2		
	BYTE		2	02	OUT_3	HSD channel 3	
				3	03	OUT_4	HSD channel 4
HSD_CHANNEL SIDE A		4	04	OUT_5	HSD channel 5		
SIDE_/(5	05	OUT_6	HSD channel 6		
		6	06	OUT_7	HSD channel 7		
		7	07	OUT_8	HSD channel 8		
		8	08	HSD_ENABLE	HSD channels enable		

HSD CHANNEL SIDE A: HSD (output) channel for the load A control.

OUT_SECTION_CURRENT_CONTROL function: HSD_CHANNEL_SIDE_A description

ISD_CHANNEL_SIDE_B: HSD (output) channel for the load B control								
Input	Туре	Dec	Hex	Label	Description			
		0	00	OUT_1	HSD channel 1			
		1	01	OUT_2	HSD channel 2			
	BYTE		2	02	OUT_3	HSD channel 3		
		3	03	OUT_4	HSD channel 4			
HSD_CHANNEL_ SIDE B		4	04	OUT_5	HSD channel 5			
0102_0		5	05	OUT_6	HSD channel 6			
		6	06	OUT_7	HSD channel 7			
		7	07	OUT_8	HSD channel 8			
		8	08	HSD_ENABLE	HSD channels enable			

UCD CHANNEL CIDE BUILD (autnut) abarral for the load D control

OUT_SECTION_CURRENT_CONTROL function: HSD_CHANNEL_SIDE_B description

CURRENT_SETPOINT: desired current value to be driven to the output.

The input value is expressed in mA, and with sign.

The absolute value represents the desired amount of mA to be driven through the outputs. The maximum absolute value is 2000mA, in respect of the load capability of the connector D2 pins. The sign selects the HSD channel, a negative value will drive the HSD_CHANNEL_SIDE_A, a positive value will drive the HSD_CHANNEL_SIDE_B.

Input	Туре	Dec	Hex	Label	Description	
		-2000	F830	(none)	Output current 2000mA, driven to Side A.	
		-	-	-	-	
			-1	FFFF	(none)	Output current 1mA, driven to Side A.
CURRENT_ SETPOINT	INT	0	0000	(none)	NULL output current 0mA	
SETTOINT		1	0001	(none)	Output current 1mA, driven to Side B.	
		-	-	-	-	
		2000	07D0	(none)	Output current 2000mA, driven to Side B.	

OUT_SECTION_CURRENT_CONTROL function: CURRENT_SETPOINT description

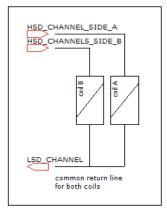
ERROR_IN: external 'enable' of the function.

If the input value is NOT NULL the function is turned-OFF, the CURRENT_SETPOINT is overwritten by 0.

Input	Туре	Dec	Hex	Label	Description
		-	-	(NULL)	The current on the output is driven normally
ERROR_IN	BYTE	-	-	(NOT NULL)	The current on the output is forced to 0mA

OUT_SECTION_CURRENT_CONTROL function: ERROR_IN description

Output parameters:


Output	Туре	Dec	Hex	Label	Description			
		0	00	ERR_NO	No Error			
		1	01	ERR_LSD_SCC	Bit 0: LSD_CHANNEL short circuit			
		2	02	(none)	Bit 1: (not used)			
		4	04	(none)	Bit 2: (not used)			
		8	08	(none)	Bit 3: (not used)			
ERROR_OUT	BYTE	16	10	ERR_LSD_PWM	Bit 4: LSD_CHANNEL already used in PWM1000			
					32	20	ERR_LSD_OSC	Bit 5: LSD_CHANNEL already used in OUT_SECTION_CURRENT_CONTROL
		64	40	(none)	Bit 6: Wrong HSD_CHANNEL (A or B)			
		128	80	ERR_LSD_CH	Bit 7: Wrong LSD_CHANNEL			

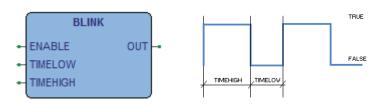
ERROR_OUT: error information, representing the status of the function.

OUT_SECTION_CURRENT_CONTROL function : ERROR_OUT description

Output description:

The current control is on the low side channel LSD_CHANNEL. Because only one coil is driven at the same time just one current common return line is used for the two coils.

OUT_SECTION_CURRENT_CONTROL function : typical connection for the two coils of the section


NOTICE

1. The OUT_SECTION_CURRENT_CONTROL function is the basic compensates the current drive on the output against the load impedance and the power supply voltage VK fluctuations. This means that the function measures the current and corrects the control to drive exactly the desired current.

4.1.2 Utility Functions

4.1.2.1 BLINK

Name:	BLINK
Unit type:	FUNCTION BLOCK (FB)
Library:	Utility.lib
Symbol:	

BLINK function symbol and functionality

Description:

The BLINK function generates a square wave pulsating signal on OUT.

The TIMELOW and TIMEHIGH input values define respectively the low and the high period times of the square wave. An ENABLE input has to be triggered to activate the function.

Input parameters:

ENABLE: function enable.

ENABLE is type BOOL.

An ENABLE input has to be triggered TRUE to start the pulse generation, and maintained TRUE to continue the operations. When the ENABLE input is reset to FALSE the blinking is stopped and the OUT level will not change, maintaining the last level reached.

TIMELOW: time period of the low level (FALSE) of the signal on OUT. TIMELOW is type TIME.

TIMEHIGH: time period of the high level (TRUE) of the signal on OUT. TIMEHIGH is type TIME

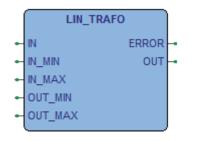
4.1.2.2 EXTRACT

Name:EXTRACTUnit type:FUNCTION (F)Library:Utility.libSymbol:

EXTRACT function symbol

Description:

The EXTRACT function returns TRUE if the Nth bit of X is 1, otherwise FALSE. X is type DWORD, the LSB is bit 0. N is type BYTE. EXTRACT is type BOOL.


Example:

X = 81d (1010001b) , N = 4d, then EXTRACT = TRUE

4.1.2.3 LIN_TRAFO

Name:LIN_TRAFOUnit type:FUNCTION BLOCK (FB)Library:Utility.libSymbol:

LIN_TRAFO function symbol

Description:

The LIN_TRAFO function transforms the input value IN, which lies in a value range defined by a lower value IN_MIN and an upper limit value IN_MAX, to a corresponding value OUT which lies in another range also defined by its lower OUT_MIN and upper OUT_MAX limit values.

The LIN_TRAFO function executes the following conversion OUT = [(IN - IN_MIN) / (IN_MAX- IN_MIN)] x (OUT_MAX-OUT_MIN) + OUT_MIN

The function output is an error information ERROR, representing the status of the control.

Input parameters:

Input	Туре	Dec	Hex	Label	Description
IN		-	-	(none)	Input value
IN_MIN		-	-	(none)	Input value range, lower limit
IN_MAX	REAL	-	-	(none)	Input value range, upper limit
OUT_MIN		-	-	(none)	Output value range, lower limit
OUT_MAX		-	-	(none)	Output value range, upper limit

LIN_TRAFO function: input parameters description

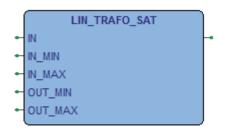
Output parameters:

Output	Туре	Dec	Hex	Label	Description		
OUT	REAL	-	-	(none)	OUT=[(IN-IN_MIN)/(IN_MAX-IN_MIN)]x(OUT_MAX-OUT_MIN)+OUT_MIN		
LIN_TRAFO function : OUT parameter description							

	Output	Туре	Dec	Hex	Label	Description		
	ERROR	BOOL	-	-	(TRUE)	If IN_MIN=IN_MAX, or IN is outside its values range		
OUTPUT_CURRENT function: ERROR_OUT description								

Example:

The following example can represent the typical conversion of a joystick input signal IN (expressed in V), into a desired output current setpoint OUT (expressed in mA).


• IN=5d, IN_MIN=0d, IN_MAX=10d, OUT_MIN=200d, OUT_MAX=400d, then OUT=300d (linear)

The following examples show how the function manages the input values conflicts.

- IN < IN_MIN, then OUT=0 (error detection).
- IN > IN_MAX, then OUT=0 (error detection).
- IN_MIN >= IN_MAX, then OUT=0 (error detection).

4.1.2.4 LIN_TRAFO_SAT

Name:LIN_TRAFO_SATUnit type:FUNCTION BLOCK (FB)Library:Utility.libSymbol:

LIN_TRAFO_SAT function symbol

Description:

The LIN_TRAFO_SAT function transforms the input value IN, which lies in a value range defined by a lower value IN_MIN and an upper limit value IN_MAX, to a corresponding value OUT which lies in another range also defined by its lower OUT_MIN and upper OUT_MAX limit values.

The LIN_TRAFO_SAT function executes the following conversion OUT = [(IN - IN_MIN) / (IN_MAX - IN_MIN)] x (OUT_MAX - OUT_MIN) + OUT_MIN

If the input value IN exceeds the input values range, IN is limited into the range (IN_MIN or IN_MAX), and the output value OUT is saturated (OUT_MIN or OUT_MAX).

The function does not output any error information.

Input parameters:

Input	Туре	Dec	Hex	Label	Description
IN		-	-	(none)	Input value
IN_MIN	REAL	-	-	(none)	Input value range, lower limit
IN_MAX		-	-	(none)	Input value range, upper limit
OUT_MIN		-	-	(none)	Output value range, lower limit
OUT_MAX		-	-	(none)	Output value range, upper limit

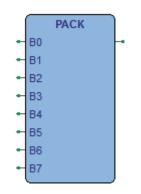
LIN_TRAFO_SAT function: input parameters description

Output parameters:

Output	Туре	Dec	Hex	Label	Description		
(function output)	REAL	-	-	(none)	OUT=[(IN-IN_MIN)/(IN_MAX-IN_MIN)]x(OUT_MAX-OUT_MIN)+OUT_MIN		
LIN_TRAFO_SAT function : function output parameter description							

Example:

The following examples can represent the usual conversion of a joystick input signal IN (expressed in V), into a desired output current setpoint OUT (expressed in mA).

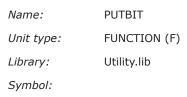

- IN=5d, IN_MIN=0d, IN_MAX=10d, OUT_MIN=200d, OUT_MAX=400d, then OUT=300d (linear).
- IN=-4d, IN_MIN=0d, IN_MAX=10d, OUT_MIN=200d, OUT_MAX=400d, then OUT=200d (low saturation).
- IN=11d, IN_MIN=0d, IN_MAX=10d, OUT_MIN=200d, OUT_MAX=400d, then OUT=400d (high saturation).

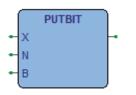
The following examples show how the function manages the input values conflicts.

• IN_MIN >= IN_MAX, then OUT=OUT_MIN (error correction).

4.1.2.5 PACK

Name:PACKUnit type:FUNCTION (F)Library:Utility.libSymbol:


PACK function symbol


Description:

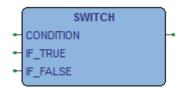
The PACK function delivers back as a BYTE the eight input bits B0, B1, ..., B7, BOOL type. The UNPACK function is closely related to this function.

4.1.2.6 PUTBIT

PUTBIT function symbol

Description:

The PUTBIT function puts the input value B, in the Nth position of the input value X. X is DWORD type (bit0 is the LSB), N is BYTE type, B is BOOL type.


Example:

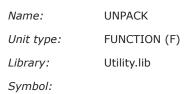
X = 38d (100110b), N = 4d, then, B = TRUE, PUTBIT = 54d (110110b)

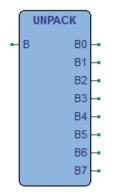
4.1.2.7 SWITCH

Name:SWITCHUnit type:FUNCTION (F)Library:Utility.libSymbol:

SWITCH function symbol

Description:


If the input variable CONDITION is TRUE, the input variable IF_TRUE is connected to the output. Otherwise the input variable IF_FALSE is connected to the output. CONDITION is type BOOL, IF_TRUE and IF_FALSE can be any type of variable.


Example:

CONDITION = FALSE, IF_TRUE = 10d, IF_FALSE = -4d, then SWTICH = -4d.

4.1.2.8 UNPACK

UNPACK function symbol

Description:

The UNPACK function converts the input B, BYTE type, into eight output variables B0, B1, ..., B7, BOOL type.

The PACK function is closely related to this function.

