
PHC Studio
Integrated

Development
Environment

U S E R M A N U A L

 D1WWTE04EII

1st edition August 2015

Additional information
This catalogue shows the product in the standard configurations.
Please contact our Sales Dpt. for more detailed information or special requests.

WARNING!
All specifications of this catalogue refer to the standard product at this date.
Walvoil, oriented to a continuous improvement, reserves the right to
discontinue, modify or revise the specifications, without notice.

WALVOIL IS NOT RESPONSIBLE FOR ANY DAMAGE CAUSED BY AN
INCORRECT USE OF THE PRODUCT.

Contents
1. Introduction 1

1.1 Conventions used in this document 1

2. Overview 3

2.1 The workspace 3
2.1.1 The output window 4
2.1.2 The status bar 4
2.1.3 The document bar 4
2.1.4 The watch window 5
2.1.5 The library window 5
2.1.6 The workspace window 6
2.1.7 The source code editors 7

3. Using the environment 9

3.1 Layout customization 9

3.2 Toolbars 9
3.2.1 Showing/hiding toolbars 9
3.2.2 Moving toolbars 9

3.3 Docking windows 10
3.3.1 Showing/hiding tool windows 10
3.3.2 Floating tool windows 10
3.3.3 Docking tool windows 10
3.3.4 Auto-Hide tool windows 11

3.4 Working with windows 11
3.4.1 The document bar 11
3.4.2 The window menu 12

3.5 Full screen mode 12

3.6 Environment options 12
3.6.1 General 12
3.6.2 Graphic Editor 13
3.6.3 Text Editors 13
3.6.4 Language 13
3.6.5 Tools 14
3.6.6 Merge 16

4. Managing projects 17

4.1 Creating a new project 17

4.2 Uploading the project from the target device 17

 D1WWTE04E III

PHC STUDIO

4.3 Saving the project 18
4.3.1 Persisting changes to the project 18
4.3.2 Saving to an alternative location 18
4.3.3 Autosave 18
4.3.4 Backup Copies 19

4.4 Managing existing projects 19
4.4.1 Opening an existing LogicLab project 19
4.4.2 Editing the project 19
4.4.3 Closing the project 20

4.5 Distributing projects 20

4.6 Project options 20
4.6.1 Project info 21
4.6.2 Code generation 21
4.6.3 Build output 22
4.6.4 Download 23
4.6.5 Debug 23
4.6.6 Build events 24

4.7 Selecting the target device 24

4.8 Working with libraries 25
4.8.1 The library manager 25
4.8.2 Exporting to a library 26
4.8.3 Importing from a library or another source 27
4.8.4 Updating existing libraries 28

5. Managing project elements 29

5.1 Program Organization Units 29
5.1.1 Creating a new Program Organization Unit 29
5.1.2 Editing POUs 30
5.1.3 Source code encryption/DECRYPTION 30

5.2 Variables 31
5.2.1 Global variables 31
5.2.2 Local variables 34
5.2.3 Creating multiple 34

5.3 Tasks 35
5.3.1 Assigning a program to a task 35
5.3.2	 Task	configuration	 36

5.4 Derived data types 36
5.4.1 Typedefs 36
5.4.2 Structures 37

 D1WWTE04EIV

PHC STUDIO

5.4.3 Enumerations 38
5.4.4 Subranges 39

5.5 Browse the project 41
5.5.1 Object Browser 41
5.5.2 Search with the Find in project command 47

5.6 Working with LogicLab extensions 49

5.7 Project Custom Workspace 50
5.7.1 Enable The Custom Workspace Into An Existing Project 50
5.7.2 Workspaces Migration 50
5.7.3 Custom Workspace Basic Units 51
5.7.4 Custom Workspace Operations 51
5.7.5 Workspace Elements With Limitations 52

6. Editing the source code 53

6.1 Instruction List (IL) editor 53
6.1.1 Editing functions 53
6.1.2 Reference to PLC objects 53
6.1.3 Automatic error location 54
6.1.4 Bookmarks 54

6.2 Structured Text (ST) Editor 54
6.2.1 Creating and editing ST objects 54
6.2.2 Editing functions 54
6.2.3 Reference to PLC objects 55
6.2.4 Automatic error location 55
6.2.5 Bookmarks 55

6.3 Ladder Diagram (LD) editor 56
6.3.1 Creating a new LD document 56
6.3.2 Adding/Removing networks 56
6.3.3 Labeling networks 57
6.3.4 Inserting contacts 57
6.3.5 Inserting coils 58
6.3.6 Inserting blocks 58
6.3.7 Editing coils and contacts properties 59
6.3.8 Editing networks 59
6.3.9 Modifying properties of blocks 59
6.3.10 Getting information on a block 60
6.3.11 Automatic error retrieval 60
6.3.12 Inserting variables 60
6.3.13 Inserting constants 60
6.3.14 Inserting expression 60

 D1WWTE04E V

PHC STUDIO

6.3.15 Comments 61
6.3.16 Branches 61

6.4 Function Block Diagram (FBD) editor 62
6.4.1 Creating a new FBD document 62
6.4.2 Adding/Removing networks 62
6.4.3 Labeling networks 63
6.4.4 Inserting and connecting blocks 63
6.4.5 Editing networks 64
6.4.6 Modifying properties of blocks 64
6.4.7 Getting information on a block 64
6.4.8 Automatic error retrieval 65

6.5 Sequential Function Chart (SFC) Editor 65
6.5.1 Creating a new SFC document 65
6.5.2 Inserting a new SFC element 65
6.5.3 Connecting SFC elements 65
6.5.4 Assigning an action to a step 65
6.5.5 Specifying a constant/a variable as the condition of a transition 67
6.5.6 Assigning conditional code to a transition 67
6.5.7 Specifying the destination of a jump 69
6.5.8 Editing SFC networks 69

6.6 Variables editor 69
6.6.1 Opening a variables editor 70
6.6.2 Creating a new variable 71
6.6.3 Editing variables 71
6.6.4 Deleting variables 73
6.6.5 Sorting variables 73
6.6.6 Copying variables 74

7. Compiling 75

7.1 Compiling the project 75
7.1.1	 Image	file	loading	 75

7.2 Compiler output 75
7.2.1 Compiler errors 76

7.3 Command-line compiler 78

8. Launching the application 79

8.1 Setting up the communication 79
8.1.1 Saving the last used communication port 81

8.2 On-line status 81
8.2.1 Connection status 81

 D1WWTE04EVI

PHC STUDIO

8.2.2 Application status 81

8.3 Downloading the application 82
8.3.1 Controlling source code download 82

8.4 Simulation 85

8.5 Control the PLC execution 85
8.5.1 Halt 85
8.5.2 Cold restart 85
8.5.3 Warm restart 85
8.5.4 Hot restart 85
8.5.5 Reboot target 85

9. Debugging 87

9.1 Watch window 87
9.1.1 Opening and closing the watch window 87
9.1.2 Adding items to the watch window 87
9.1.3 Removing a variable 90
9.1.4 Refreshment of values 91
9.1.5 Changing the format of data 92
9.1.6 Working with watch lists 92
9.1.7 Autosave watch list 94

9.2 Oscilloscope 94
9.2.1 Opening and closing the oscilloscope 95
9.2.2 Adding items to the oscilloscope 95
9.2.3 Removing a variable 98
9.2.4 Variables sampling 98
9.2.5 Controlling data acquisition and display 98
9.2.6 Changing the polling rate 105
9.2.7 Saving and printing the graph 105

9.3 Edit and debug mode 107

9.4 Live debug 107
9.4.1 SFC animation 107
9.4.2 LD animation 108
9.4.3 FBD animation 108
9.4.4 IL and ST animation 109

9.5 Triggers 109
9.5.1 Trigger window 109
9.5.2 Debugging with trigger windows 115

9.6 Graphic triggers 125
9.6.1 Graphic trigger window 125

 D1WWTE04E VII

PHC STUDIO

9.6.2 Debugging with the graphic trigger window 131

10. LogicLab reference 141

10.1 Menus reference 141
10.1.1 File menu 141
10.1.2 Edit menu 142
10.1.3 View menu 143
10.1.4 Project menu 144
10.1.5 Online Menu 145
10.1.6 Debug menu 146
10.1.7 Scheme FBD menu 147
10.1.8 Scheme LD menu 149
10.1.9 Scheme SFC menu 151
10.1.10 Variables menu 152
10.1.11 Window menu 152
10.1.12 Help menu 152

10.2 Toolbars reference 153
10.2.1 Main toolbar 153
10.2.2 FBD toolbar 153
10.2.3 LD toolbar 153
10.2.4 SFC toolbar 153
10.2.5 Project toolbar 153
10.2.6 Network toolbar 153
10.2.7 Debug toolbar 153

11. Language reference 155

11.1 Common elements 155
11.1.1 Basic elements 155
11.1.2 Elementary data types 155
11.1.3 Derived data types 156
11.1.4 Literals 158
11.1.5 Variables 159
11.1.6 Program Organization Units 162
11.1.7 IEC 61131-3 standard functions 165

11.2 Instruction List (IL) 179
11.2.1 Syntax and semantics 179
11.2.2 Standard operators 180
11.2.3 Calling Functions and Function blocks 181

11.3 Function Block Diagram (FBD) 182
11.3.1 Representation of lines and blocks 182
11.3.2	 Direction	of	flow	in	networks	 182

 D1WWTE04EVIII

PHC STUDIO

11.3.3 Evaluation of networks 182
11.3.4 Execution control elements 184

11.4 Ladder Diagram (LD) 185
11.4.1 Power rails 185
11.4.2 Link elements and states 186
11.4.3 Contacts 186
11.4.4 Coils 187
11.4.5 Operators, functions and function blocks 188

11.5 Structured Text (ST) 188
11.5.1 Expressions 188
11.5.2 Statements in ST 189

11.6 Sequential Function Chart (SFC) 194
11.6.1 Steps 195
11.6.2 Transitions 197
11.6.3 Rules of evolution 197
11.6.4	 SFC	control	flags	 200
11.6.5 Check a SFC POU from other programs 201

11.7 LogicLab Language Extensions 203
11.7.1 Macros 203
11.7.2 Pointers 203
11.7.3 Waiting statement 204

12. Errors Reference 205

12.1 Compile time error messages 205

 D1WWTE04E IX

PHC STUDIO

1. INTRODUCTION

1.1 CONVENTIONS USED IN THIS DOCUMENT

Text Type Description

Command, Key Name of the command or keyboard shortcuts key.

Code Source code text.

 [Context menu] Toolbar icon and context menu voice.

[Context menu] Context menu voice without any icon.

Menu>Item
For menu items hierarchy, the “>” symbol is used. A
record File>Open Project is equivalent to “the Open
Project item under the File menu”.

 Menu>Item Same as above including the icon shown in the
toolbar.

(see Paragraph)
(see Chapter) Link to related subject within this guide.

Terminology Important term or concept.

 D1WWTE04E 1

PHC Studio

 D1WWTE04E2

PHC Studio

2. OVERVIEW

PHC Studio is an IEC61131-3 Integrated Development Environment supporting the whole range of languages
defined in the standard.

In order to support the user in all the activities involved in the development of an application, PHC Studio in-
cludes:

 - textual source code editors for the Instruction List (briefly, IL) and Structured Text (briefly, ST) programming
languages (see Chapter 6.);

 - graphical source code editors for the Ladder Diagram (briefly, LD), Function Block Diagram (briefly, FBD), and
Sequential Function Chart (briefly, SFC) programming languages (see Chapter 6.);

 - a compiler, which translates applications written according to the IEC standard directly into machine code,
avoiding the need for a run-time interpreter, thus making the program execution as fast as possible (see
Chapter 7);

 - a communication system which allows the download of the application to the target environment (see Chapter
8);

 - a rich set of debugging tools, ranging from an easy-to-use watch window to more powerful tools, which allows
the sampling of fast changing data directly on the target environment, ensuring the information is accurate
and reliable (see Chapter 9).

2.1 THE WORKSPACE

The figure below shows a view of PHC Studio’s workspace, including many of its more commonly used compo-
nents.

3

1

7

2

1. Workspace window 2. Output window 3. Source code editors 4. Watch window 5. Library window 6. Status
bar 7. Document bar

The following paragraphs give an overview of these elements.

6

5

4
3

3

3

 D1WWTE04E 3

PHC Studio

2.1.1 THE OUTPUT WINDOW

The Output window is the place where PHC Studio prints its output messages. This window contains four tabs:
Build, Find in project, Debug, and Resources.

Build

The Build panel displays the output of the following activities:

 - opening a project;
 - compiling a project;
 - downloading code to a target.

Find in project

This panel shows the result of the Find in project activity.

Debug

The Debug panel displays information about advanced debugging activities (for example, breakpoints). De-
pending on the target device you are interfacing with, PHC Studio can print on this output window every PLC
run-time error (for example, division by zero), locating the exact position where the error occurred.

Resources

The Resources panel displays messages related to the specific target device PHC Studio is interfacing with.

2.1.2 THE STATUS BAR

The Status bar displays the state of the application at its left border, and an animated control reporting the
state of communication at its right border.

2.1.3 THE DOCUMENT BAR

The Document bar lists all the documents currently open for editing in PHC Studio.

 D1WWTE04E4

PHC Studio

2.1.4 THE WATCH WINDOW

The Watch window is one of the many debugging tools supplied by PHC Studio. Among the other debugging
tools, it is worth mentioning the Oscilloscope (see Paragraph 9.2), triggers, and the live debug mode (see Para-
graph 9.2).

2.1.5 THE LIBRARY WINDOW

The Library window contains a set of different panels, which fall into the categories explained in the follow-
ing paragraphs.

You can choose the display mode by clicking the right button of your mouse. In the [View list] mode, each
element is represented by its name and icon. Instead, a table appears in the [View detail] mode, each row
of which is associated with one of the embedded elements. The latter mode also displays the Type (Operator/
Function) and the description of each element.

If you right-click one of the elements of this panel, and you click [Object properties] from the dialog box,
then a window appears with further details on the element you selected (input and output supported types,
name of input and output pins, etc.).

In the [View folder] mode each element is grouped into the folder to which it belongs. These folders are use-
ful to logically group the library elements.

2.1.5.1 OPERATORS AND STANDARD BLOCKS

This panel lists basic language elements, such as operators and functions defined by the IEC 61131-3 standard.

2.1.5.2 TARGET VARIABLES

This panel lists all the system variables, also called target variables, which are the interface between firmware
and PLC application code.

 D1WWTE04E 5

PHC Studio

2.1.5.3 TARGET BLOCKS

This panel lists all the system functions and function blocks available on the specific target device.

2.1.5.4 INCLUDED LIBRARY PANELS

The panels described in the preceding paragraphs are usually always available in the Library window. How-
ever, other panels may be added to this window, one for each library included in the current PHC Studio project.
For example, the picture above was taken from a PHC Studio project having two included libraries, basic.pll
and thermmodel.pll (see Paragraph 4.7).

2.1.6 THE WORKSPACE WINDOW

The Workspace window consists of three distinct panels, as shown in the following picture.

 D1WWTE04E6

PHC Studio

2.1.6.1 PROJECT

The Project panel contains a set of folders:

 - Tasks: this item lists the system tasks and the programs assigned to each task (see Paragraph 5.3).

2.1.6.2 DEFINITIONS

The Definitions panel contains the definitions of all user-defined data types, such as structures or enumer-
ated types.

2.1.6.3 RESOURCES

The contents of the Resources panel depends on the target device PHC Studio is interfacing with: it may
include configuration elements, schemas, wizards, and so on.

2.1.7 THE SOURCE CODE EDITORS

The PHC Studio programming environment includes a set of editors to manage, edit, and print source files writ-
ten in any of the 5 programming languages defined by the IEC 61131-3 standard (see Chapter 6).

The definition of both global and local variables is supported by specific spreadsheet-like editors

 D1WWTE04E 7

PHC Studio

 D1WWTE04E8

PHC Studio

3. USING THE ENVIRONMENT

This chapter shows you how to deal with the many UI elements PHC Studio is composed of, in order to let you
set up the IDE in the way which best suits to your specific development process.

3.1 LAYOUT CUSTOMIZATION

The layout of PHC Studio’s workspace can be freely customized in order to suit your needs.

PHC Studio takes care to save the layout configuration on application exit, in order to persist your preferences
between different working sessions.

3.2 TOOLBARS

3.2.1 SHOWING/HIDING TOOLBARS

In details, in order to show (or hide) a toolbar, open the View>Toolbars menu and select the desired toolbar
(for example, the FBD bar).

The toolbar is then shown (hidden).

3.2.2 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to the destination.

The toolbar shows up in the new position.

 D1WWTE04E 9

PHC Studio

3.3 DOCKING WINDOWS

3.3.1 SHOWING/HIDING TOOL WINDOWS

The View>Tool windows menu allows you to show (or hide) a tool window (for example, the Output
window).

The tool window is then shown (hidden).

3.3.2 FLOATING TOOL WINDOWS

You can undock any window from its default location in PHC Studio and move it anywhere by dragging it to the
location you want.

Take back a window to its most recent docked location simply double-click the title bar of the window.

3.3.3 DOCKING TOOL WINDOWS

PHC Studio shows you a guide diamond when you drag a window to another location to help you easily re-dock
the window.

While dragging a window move the mouse cursor on the position of the guide diamond you want to use as new
window position.

Tool windows can be fastened to one side of a frame in PHC Studio or within a frame.

 D1WWTE04E10

PHC Studio

3.3.4 AUTO-HIDE TOOL WINDOWS

By the pin button on the top right corner of the window you can switch the window to auto-hide mode or to
regular docking mode.

3.4 WORKING WITH WINDOWS

PHC Studio allows to open many source code editors so that the workspace could get rather messy.

You can easily navigate between these windows through the Document bar and the Window menu.

3.4.1 THE DOCUMENT BAR

The Document bar allows to switch between all the currently open editors, simply by clicking on the corre-
sponding name.

You can show or hide the Document bar with the menu option of the same name in the menu
View>Toolbars>Document bar .

 D1WWTE04E 11

PHC Studio

3.4.2 THE WINDOW MENU

The Window menu is an alternative to the Document bar: it lists all the currently open editors and allows
to switch between them.

Moreover, this menu supplies a few commands to automate some basic tasks, such as closing all windows.

3.5 FULL SCREEN MODE

In order to ease the coding of your application, you may want to switch on the full screen mode. In full screen
mode, the source code editor extends to the whole working area, making easier the job of editing the code,
notably when graphical programming languages (that is, LD, FBD, and SFC) are involved.

You can switch on and off the full screen mode with the View>Full screen .

3.6 ENVIRONMENT OPTIONS

If you click File>Options... , a multi-tab dialog box appears and lets you customize some options of PHC Studio.

3.6.1 GENERAL

3.6.1.1 SAVE OPTIONS

Autosave: if the Enable Autosave box is checked, PHC Studio periodically saves the whole project. You
can specify the period of execution of this task by entering the number of minutes between two automatic sav-
ings in the Autosave interval text box.

Max previous version to keep: if set greater than 0 indicates the maximum number of
copies of the project that must be zipped and stored in the PreviousVersions folder.

3.6.1.2 OUTPUT WINDOW

You can specify the family and the size of the font used for output window.

 D1WWTE04E12

PHC Studio

3.6.1.3 COMMUNICATION

If enabled, the last used port will be set as the default one.

3.6.1.4 TOOLTIP

If enabled, small information boxes will appear when user places the cursor over a symbol in the editors.

3.6.1.5 TOOL WINDOWS

You can specify the family and the size of the font used for tool windows.

Reset bars positions: the layout of the dock bars in the IDE will be resetted to default posi-
tions and dimensions. In order to take effect PHC Studio must be restarted.

3.6.2 GRAPHIC EDITOR

This panel lets you edit the properties of the LD, FBD, and SFC source code editors.

You can specify the family and the size of the font used for graphical editors.

You can modify also the colours of the graphical object.

3.6.3 TEXT EDITORS

You can specify the family and the size of the font both for code and variable editors.

3.6.4 LANGUAGE

You can change the language of the environment by selecting a new one from the list shown in this panel.

After selecting the new language, press the Select button and confirm by clicking OK. This change will be ef-
fective only the next time you start PHC Studio.

 D1WWTE04E 13

PHC Studio

3.6.5 TOOLS

You can add up to 16 commands to the Tools menu. These commands can be associated with any program
that will run on your operating system. You can also specify arguments for any command that you add to the
Tools menu. The following procedure shows you how to add a tool to the Tools menu.

1) Type the full path of the executable file of the tool in the Command text box. Otherwise, you can specify
the filename by selecting it from Windows Explorer, which you open by clicking the Browse button.

2) In the Arguments text box, type the arguments - if any - to be passed to the executable command
mentioned at step 1. They must be separated by a space.

3) Enter in Menu string the name you want to give to the tool you are adding. This is the string that will
be displayed in the Tools menu.

4) Press Add to effectively insert the new command into the suitable menu.

5) Press OK to confirm, or Cancel to quit.

For example, let us assume that you want to add Windows calculator to the Tools menu:

 - Fill the fields of the dialog box as displayed.

 D1WWTE04E14

PHC Studio

 - Press Add. The name you gave to the new tool is now displayed in the list box at the top of the panel.

And in the Tools>Calc menu as well.

 D1WWTE04E 15

PHC Studio

3.6.6 MERGE

Here you can set the merge function behavior (see Paragraph 4.8.3.2 for more details).

 D1WWTE04E16

PHC Studio

4. MANAGING PROJECTS

This chapter focuses on PHC Studio projects.

A project corresponds to a PLC application and includes all the required elements to run that application on the
target device, including its source code, links to libraries, information about the target device and so on.

The following paragraphs explain how to properly work with projects and their elements.

4.1 CREATING A NEW PROJECT

To start a new project, click File>New project of the PHC Studio main window.

You are required to enter the name of the new project in the Name control. The string you enter will also be
the name of the folder which will contain all the files making up the PHC Studio project. The pathname in the
Directory control indicates the default location of this folder.

Target selection allows you to specify the target device which will run the project.

Finally, you can make the project case-sensitive by activating the related option. Note that, by default, this op-
tion is not active, in compliance with IEC 61131-3 standard: when you choose to create a case-sensitive project,
it will not be standard-compliant.

When you confirm your decision to create a new project and the whole required information has been provided,
PHC Studio completes the operation, creating the project directory and all project files; then, the project is
opened.

The list of devices from which you can select the target for the project you are creating depends on the contents
of the catalog of target devices available to PHC Studio.

When the desired target is missing, either you have run the wrong setup executable or you have to run a sepa-
rate setup which is responsible to update the catalog to include the target device. In both cases, you should
contact your hardware supplier for support.

4.2 UPLOADING THE PROJECT FROM THE TARGET DEVICE

Depending on the target device you are interfacing with, you may be able to upload a working PHC Studio pro-
ject from the target itself.

In order to upload the project from the target device, follow the procedure below:

1) Click the File>Import project from target menu voice of the PHC Studio main window, which opens
the Target list dialog box.

 D1WWTE04E 17

PHC Studio

2) From the shown list select the target device from which you want to upload the project.

3) Configure Connection with correct parameters (see Paragraph 8.1 for more details).

4) You can test the connection with the target device by Verify Connection button. PHC Studio tries to
establish the connection and reports the test result.

5) If the connection is available confirm the operation by clicking on the Upload Sources button. When
the application upload completes successfully, the project is open and ready for editing.

4.3 SAVING THE PROJECT

4.3.1 PERSISTING CHANGES TO THE PROJECT

When you make any change to the project (for example, you add a new Program Organization Unit) you are
required to save the project in order to persist that change.

To save the project, you can select the corresponding item File>Save project .

4.3.2 SAVING TO AN ALTERNATIVE LOCATION

You can also use the File>Save project As ... command to rename the project, change its format or modify
the location of where you want save the file.

PHC Studio asks you to select the new destination (which must be an empty directory), then saves a copy of the

project to that location and opens this new project file for editing.

4.3.3 AUTOSAVE

PHC Studio includes an AutoSave feature that periodically saves your project as you work on it.

AutoSave saves data in a separate folder, called Backup, stored at the same location of the project folder.

AutoSave protects your project in the event that PHC Studio unexpectedly quits. When PHC Studio is started
again, if the Backup folder is present, you are asked to restore the last valid backup file of the project.

 D1WWTE04E18

PHC Studio

When you close PHC Studio correctly the Backup folder and its contents are deleted. You can specify the inter-
val time (in minutes) between saving.

By default AutoSave is running with 1 minute of interval (see Paragraph 3.6 for more details).

4.3.4 BACKUP COPIES

PHC Studio includes a backup feature of the previous version of the project on which you are working.

When you explicitly save the project, PHC Studio saves the current version (before save) of the project in the
PreviousVersions folder stored at the same location of the project folder;

You can set the upper limit of the backup files to be kept on your PC. By default this is 10, set to 0 if you want
to disable this feature (see Paragraph 3.6 for more details).

4.4 MANAGING EXISTING PROJECTS

4.4.1 OPENING AN EXISTING PHC STUDIO PROJECT

To open an existing project, click File>Open project of PHC Studio’s main window, or in the Welcome
page (when no project is open). This causes a dialog box to appear, which lets you load the directory containing
the project and select the relative project file.

4.4.2 EDITING THE PROJECT

In order to modify an element of a project, you need first to open that element by double-clicking its name,
which you can find by browsing the tree structure of the project tab of the Workspace bar.

By double-clicking the name of the object you want to modify, you open an editor consistent with the object
type: for example, when you double-click the name of a project POU, the appropriate source code editor is
shown; if you double-click the name of a global variable, the variable editor is shown.

Note that PHC Studio prevents you from applying changes to elements of a project, when at least one of the
following conditions holds:

 - you are in debug mode.

 - It is an object of an included library (whereas you can modify an object that you imported from a library).

 - The project is opened in read-only mode (view project).

 D1WWTE04E 19

PHC Studio

4.4.3 CLOSING THE PROJECT

You can terminate the working session either by explicitly closing the project or by exiting PHC Studio. In both
cases, when there are changes not yet persisted to file, PHC Studio asks you to choose between saving and
discarding them.

To close the project, select the item File>Close project ; PHC Studio shows the Welcome page, so that you
can rapidly start a new working session.

4.5 DISTRIBUTING PROJECTS

When you need to share a project with another developer you can send him/her either a copy of the project
file(s) or a redistributable source module (RSM) generated by PHC Studio.

In the former case, the number of files you have to share depends on the format of the project file:

 - PLC single project file (.ppjs file extension): the project file itself contains the whole information needed
to run the application (assuming the receiving developer has an appropriate available target device) including
all source code modules, so that you need to share only the .ppjs file.

 - PLC multiple project file (.ppjx or .ppj file extension): the project file contains only the links to the
source code modules composing the project, which are stored as single files in the project directory. You need
to share the whole directory.

 - Full XML PLC project file (.plcprj): the project file is generated entirely in XML language. The information
contained in the project file and its behavior are the same as .ppjs file extension.

Alternatively, you can generate a redistributable source module (RSM) with the corresponding item
Project>Generate redistributable source module .

PHC Studio notifies you of the name of the RSM file and lets you choose whether to protect the file with a pass-
word or not. If you choose to protect the file, PHC Studio asks you to insert the password.

The advantages of the RSM file format are:

 - the source code is encoded in binary format, thus it cannot be read by third parties which do not use
PHC Studio, making a transfer over the Internet more secure;

 - it can be protected with a password, which will be required by PHC Studio on file opening;

 - being a binary file, its size is reduced.

4.6 PROJECT OPTIONS

You can edit some significant project properties choosing Project>Options... .

 D1WWTE04E20

PHC Studio

4.6.1 PROJECT INFO

Here you can set some basic properties related to the project, such as its application name and version.

 - Use new LD editor: the new Ladder Diagram editor is easier to use, by helping you in common opera-
tions working on the diagram will be faster and more efficient. Note that, by default, this option is active.

 - Use customizable workspace: allows you to manage your project tree in order to reach a more ef-
ficient workspace. Note that, by default, this option is active.

4.6.2 CODE GENERATION

Here you can edit some properties about code generation.

 D1WWTE04E 21

PHC Studio

 - Case sensitivity: you can set the project as case-sensitive checking this option. Note that, by default,
this option is not active.

 - Check function and function block external variables: if this option is disabled, all
functions and function blocks can access to global variables without declaring them as external variables. Note
that, by default, this option is enabled respecting the IEC 61131-3 standard.

 - Print debug information: prints on the output window some significant debug info.

 - Allow only integer indexes for arrays: if this option is checked you cannot use BYTE, WORD
or DWORD as array indexes.

 - Run-time check of array bounds: if this option is checked some check code is added to verify
that array indexes are not out of bounds during run-time. This option is settable depending on target device.

 - Run-time check of division by zero: if this option is checked some check code is added to
verify that divisions by zero are not performed on arrays during run-time. This option is settable depending
on target device.

 - Run-time check of pointers: if this option is checked the pointers will be test for their validity be-
fore their use, calling a user-defined function checkptr on target. Therefore this option is settable depending
on target device.

 - Enable SFC control flags (extension to standard): if this option is checked, HOLD and
RESET flags for SFC POU are enabled.

 - Enable WAITING statement (extension to standard): if this option is checked the WAIT-
ING construct for the ST language is added as IEC 61131-3 extension (see Paragraph 11.7.3 for more de-
tails).

 - Data copy size warning threshold (bytes, 0=disable): when arrays or structures are
copied, if their dimension exceed the specified threshold, a warning is emitted in order to inform the possible
loss of performance of the PLC. If the threshold is set to 0, no warnings are emitted.

 - Disable warning emission: if this option is checked warning emissions are not printed on the output
window.

 - Disable warning codes: if this option is checked some specified warning emissions are not printed
on the output window.

4.6.3 BUILD OUTPUT

Here you can edit some significant properties of the output files generated by compiling operation.

 D1WWTE04E22

PHC Studio

Listing section

 - Generate listing file: if this option is checked the compiler will generate a listing file named as
projectname.lst.

 - Include source code (active only if Generate listing file is checked): if this option is
checked the source code will be inserted as visible in the lst file. Otherwise the source code will be hidden.

Downloadable target files section

 - Create downloadable target files: if this option is checked the compiler will generate the binary
files that can be downloaded to the target. You can specify custom filenames or use default ones.

Please note that only valid Windows filename are accepted!

 - PLC application (active only if Create downloadable target files is checked): this field
specifies the name of the PLC application binary file. By default projectname.bin.

 - Source code (active only if Create downloadable target files is checked): this field speci-
fies the name of the Source code binary file. By default projectname._source.bin.

 - Debug (active only if Create downloadable target files is checked): this field specifies the
name of the Debug symbol binary file. By default projectname._debug.bin

Generate EXP file section

 - Generate EXP file: if this option is checked the compiler will generate an EXP file named as pro-
jectname.exp

4.6.4 DOWNLOAD

Here you can edit some significant properties of the download behavior (see Paragraph 8.3.1 for more informa-
tion).

4.6.5 DEBUG

Here you can edit some significant properties of the debug behavior.

 D1WWTE04E 23

PHC Studio

 - Polling period for debug function (ms): set the active sampling period of the functions’s
status.

 - Number of displayed array elements without alert message: specifies the maximum
number of array elements to be added in watch window without being alerted.

 - Polling period between more variables (ms): set the sleep period between sampling two
variables.

 - Autosave watch list: if checked (not by default) the watch list status will be saved into a file, when
the project is closed (see Paragraph 9.1.7 for more details).

4.6.6 BUILD EVENTS

Here you can specify commands that run before the build starts or after the build finishes. You can also use a
set of defined environment variables listed on the top of the window.

4.7 SELECTING THE TARGET DEVICE

You may need to port a PLC application on a target device which differs from the one you originally wrote the
code for. Follow the instructions below to adapt your PHC Studio project to a new target device.

1) Click Project>Select target menu of the PHC Studio main window. This causes the following dialog
box to appear.

 D1WWTE04E24

PHC Studio

2) Select one of the target devices listed in the combo box.

3) Click Change to confirm your choice, Cancel to abort.

4) If you confirm, PHC Studio displays the following dialog box.

Press Yes to complete the conversion, No to quit.

If you press Yes, PHC Studio updates the project to work with the new target.

It also makes a backup copy of the project file(s) in a sub-directory inside the project directory, so that
you can roll-back the operation by manually (i.e., using Windows Explorer) replacing the project file(s)
with the backup copy.

4.8 WORKING WITH LIBRARIES

Libraries are a powerful tool for sharing objects between PHC Studio projects. Libraries are usually stored in
dedicated source file, whose extension is .pll.

4.8.1 THE LIBRARY MANAGER

The library manager lists all the libraries currently included in a PHC Studio project. It also allows you to include
or remove libraries.

To access the library manager, click Project>Library manager .

4.8.1.1 INCLUDING A LIBRARY

The following procedure shows you how to include a library in a PHC Studio project, which results in all the li-
brary’s objects becoming available to the current project.

Including a library means that a reference to the library’s .pll file is added to the current project, and that a
local copy of the library is made. Note that you cannot edit the elements of an included library, unlike imported
objects.

If you want to copy or move a project which includes one or more libraries, make sure that references to those
libraries are still valid in the new location.

1) Click Project>Library manager , which opens the Library manager dialog box.

2) Press the Add button, which causes an explorer dialog box to appear, to let you select the .pll file of
the library you want to open.

3) When you have found the .pll file, open it either by double-clicking it or by pressing the Open button.
The name of the library and its absolute pathname are now displayed in a new row at the bottom of the
list in the white box.

 D1WWTE04E 25

PHC Studio

4) Repeat step 1, 2, and 3 for all the libraries you wish to include.

5) When you have finished including libraries, press either OK to confirm, or Cancel to quit.

4.8.1.2 REMOVING A LIBRARY

The following procedure shows you how to remove an included library from the current project. Remember that
removing a library does not mean erasing the library itself, but the project’s reference to it.

1) Click Project>Library manager menu of the PHC Studio main window, which opens the Library
manager dialog box.

Select the library you wish to remove by clicking its name once. The Remove button is now enabled.

2) Click the Remove button, which causes the reference to the selected library to disappear from the Pro-
ject library list.

3) Repeat for all the libraries you wish to remove. Alternatively, if you want to remove all the libraries, you
can press the Remove all button.

4) When you have finished removing libraries, press either OK to confirm, or Cancel not to apply changes.

4.8.2 EXPORTING TO A LIBRARY

You may export an object from the currently open project to a library, in order to make that object available to
other projects. The following procedure shows you how to export objects to a library.

1) Look for the object you want to export by browsing the tree structure of the project tab of the Work-
space bar, then click once the name of the object.

2) Click Project>Export object to library . This causes the following dialog box to appear.

 D1WWTE04E26

PHC Studio

3) Enter the destination library by specifying the location of its .pll file. You can do this by:

 - typing the full pathname in the white text box;

 - clicking the Browse button , in order to open an explorer dialog box which allows you to browse your
disk and the network.

4) You may optionally choose to encrypt the source code of the POU you are exporting, in order to protect
your intellectual property.

5) Click OK to confirm the operation, otherwise press Cancel to quit.

If at Step 3 of this procedure you enter the name of a non-existing .pll file, PHC Studio creates the file, thus
establishing a new library.

4.8.2.1 UNDOING EXPORT TO A LIBRARY

So far, it is not possible to undo export to a library. The only possibility to remove an object is to create another
library containing all the objects of the current one, except the one you wish to delete.

4.8.3 IMPORTING FROM A LIBRARY OR ANOTHER SOURCE

You can import an object from a library in order to use it in the current project. When you import an object from
a library, the local copy of the object loses its reference to the original library and it belongs exclusively to the
current project. Therefore, you can edit imported objects, unlike objects of included libraries.

There are two ways of getting a POU from a library. The following procedure shows you how to import objects
from a library.

1) Click Project>Import object from library . This causes an explorer dialog box to appear, which lets
you select the .pll file of the library you want to open.

2) When you have found the .pll file, open it either by double-clicking it or by pressing the Open button.
The dialog box of the library explorer appears in foreground. Each tab in the dialog box contains a list of
objects of a type consistent with the tab’s title.

3) Select the tab of the type of the object(s) you want to import. You can also make simple queries on the
objects in each tab by using Filters. However, note that only the Name filter actually applies to li-
braries. To use it, select a tab, then enter the name of the desired object(s), even using the * wildcard, if
necessary.

4) Select the object(s) you want to import, then press the Import object button.

5) When you have finished importing objects, press indifferently OK or Cancel to close the Library
browser.

 D1WWTE04E 27

PHC Studio

4.8.3.1 UNDOING IMPORT FROM A LIBRARY

When you import an object in a PHC Studio project, you actually make a local copy of that object. Therefore,
you just need to delete the local object in order to undo import.

4.8.3.2 MERGE FUNCTION

When you import objects in a PHC Studio project or insert a copied mapped variable, you may encounter an
overlapping address or duplicate naming warning.

By setting the corresponding environment options (see Paragraph 3.6 for more details) you can choose the be-
havior that PHC Studio should keep when encountering those problems.

The possible actions are:

Ask Automatic Take from
library

Do
nothing

Naming
behavior

If different types X X X

If same type but not
variables X X X

If both variables X X X

Address
behavior

If address overlaps X X X

Copy/paste mapped
variable X X

 - Ask (default): user has to decide every time an action is required.

 - Automatic: a valid name or address is automatically generated by PHC Studio and assigned to the im-
ported object.

 - Take from library: the name or the address is taken from the imported object.

 - Do nothing: the name or the address of the objects in the project are not modified.

After importing objects, PHC Studio generates a log file in the project folder with detailed info.

4.8.4 UPDATING EXISTING LIBRARIES

If you edit a linked library file you can refresh its content on the project without closing PHC Studio.

1) Click Project>Refresh all libraries .

2) If the file is correct, PHC Studio updates the linked library content and prints a successful message in the
output window, otherwise no changes are made on the existing linked library.

 D1WWTE04E28

PHC Studio

5. MANAGING PROJECT ELEMENTS

This chapter shows you how to deal with the elements which compose a project, namely: Program Organization
Units (briefly, POUs), tasks, derived data types, and variables.

5.1 PROGRAM ORGANIZATION UNITS

A POU is a Program Organization Unit of type Program, Function or Function block.

This paragraph shows you how to add new POUs to the project, how to edit and eventually remove them.

5.1.1 CREATING A NEW PROGRAM ORGANIZATION UNIT

In order to Add a POU select the appropriate voice of the menu
Project>New Object>New program

Please note that the item of the sub-menu may change according to the type of the POU you want to create.

PHC Studio will show you a dialog box in where you must select the specific language for the new POU and enter
its name.

Confirm the operation by clicking on the OK button.

Alternatively, you can create a new POU from the context menu by selecting a folder or the root element of the
project (see Paragraph 5.7.4).

After creating a new program, an alert icon (interrogation mark) appears below the new program icon.

This alert icon indicates that the program is not yet associated to a task. Refer to paragraph 5.3.1 to assign the
program to the desired task.

 D1WWTE04E 29

PHC Studio

5.1.1.1 ASSIGNING A PROGRAM TO A TASK AT CREATION TIME

When creating a new program, PHC Studio gives you the chance to assign that program to a task at the same
time: select the task you want the program to be assigned to from the list shown in the Task section of the
New program window.

5.1.2 EDITING POUS

To edit a POU, open it by double-clicking it from the project tree. The relative editor opens and lets you modify
the source code of the POU.

Changing the name of the POU:
Select a POU from the project tree then choose the appropriate voice of the menu Project > PLC Object Properties
. Please note that the menu voice may change according to the type of the selected POU.

Duplicating a POU:
Select a POU from the project tree then choose the appropriate voice of the menu Project>Duplicate object
. Please note that the menu voice may change according to the type of the selected POU.

Enter the name of the new duplicated POU and confirm the operation.

Deleting POUs
Select a POU from the project tree then choose the appropriate voice of the menu Project>Delete Object .

Please note that the item of the sub-menu may change according to the type of the POU you have selected.

Confirm the operation to delete the POU.

5.1.3 SOURCE CODE ENCRYPTION/DECRYPTION

PHC Studio can encrypt POUs and protect them with a password, hiding the source code of the POU.

Encrypting a POU:
Select a POU from the project tree then choose the [Crypt] voice of the context menu

 D1WWTE04E30

PHC Studio

Double enter the password and confirm the operation.

PHC Studio shows in the project tree a special marker icon that overlays the standard POU icon in order to in-
form the user that the POU is crypted.

Decrypting a POU:
Select a POU from the project tree then choose the [Decrypt] voice of the context menu

Encrypting all POUs:
Select the root element from the project tree then choose the [Crypt all objects] voice of the context menu.

All POUs will be encrypted with the same password.

Decrypt all POUs:

Select the root element from the project tree then choose the [Decrypt all objects] voice of the context
menu.

5.2 VARIABLES

There are two classes of variables in PHC Studio: global variables and local variables.

This paragraph shows you how to add to the project, edit, and eventually remove both global and local variables.

5.2.1 GLOBAL VARIABLES

Global variables can be seen and referenced by any module of the project.

5.2.1.1 CLASSES OF GLOBAL VARIABLES

Global variables are organized in special folders of the project tree called Global variables group. Those
variables are classified according to their properties as:

 - Automatics: the compiler automatically allocates them to an appropriate location in the target device memory.

 - Mapped: they have an assigned address in the target device logical addressing system, which shall be speci-
fied by the developer.

 - Constants: are declared having the CONSTANT attribute; They cannot be written.

 - Retains: they are declared having the RETAIN attribute; Their values are stored in a persistent memory area
of the target device.

5.2.1.2 CREATING A NEW GLOBAL VARIABLE

1) In order to create a new global variable you need to define almost one Global variables group
in your project then select it from the project tree then choose the appropriate voice of the menu
Project>New Object>New variable (see Paragraph 5.7.4).

2) PHC Studio will show you a dialog box where you must enter the name of the variable (remember that
some characters, such as ‘?’, ‘.’, ‘/’, and so on, cannot be used: the variable name must be a valid IEC
61131-3 identifier).

 D1WWTE04E 31

PHC Studio

3) Specify the type of the variable either by typing it or by selecting it from the list that PHC Studio displays
when you click on the Browse button.

If you want to declare an array, you must specify its size.

4) You may optionally assign the initial value to the variable or to the single elements of the array.

If you create a new mapped variable, you are required to specify the address of the variable during its definition.
In order to do so, you may do one of the following actions:

 - Click on the button to open the editor of the address, then enter the desired value.

 D1WWTE04E32

PHC Studio

 - Select from the list that PHC Studio shows you the memory area you want to use: the tool automatically cal-
culates the address of the first free memory location of that area.

5.2.1.3 EDITING A GLOBAL VARIABLE

To edit the definition of an existing global variable, open it by double-clicking it, or the folder that it belongs to,
from the project tree. The global variables editor opens and lets you modify its definition.

Changing the name of the variable:
Select the variable you want to rename from the project tree then choose the appropriate voice of the menu
 Project>View PLC Object Properties .

Duplicating a variable:
Select the variable you want to duplicate from the project tree then choose the appropriate voice of the menu
Project>Duplicate variable .

Enter the name of the new duplicated variable and confirm.

5.2.1.4 DELETING A GLOBAL VARIABLE

Select the variable you want to delete from the project tree then choose the appropriate voice of the menu
Project>Delete variable .

Confirm the operation to delete the variable.

 D1WWTE04E 33

PHC Studio

5.2.2 LOCAL VARIABLES

Local variables are declared within a POU (either program, or function, or function block), the module itself being
the only project element which can refer to and access them.

Local variables are listed in the project tree under the POU which declares them (only when that POU is open for
editing), where they are further classified according to their class (e.g., as input or inout variables).

In order to create, edit, and delete local variables, you have to open the Program Organization Unit for editing
and use the local variables editor. The project needs to be saved in order to update the POU branch structure of
the project tree, including the changes applied to the local variables.

Refer to the corresponding section in this manual for details (see Paragraph 6.6.1.2).

5.2.3 CREATING MULTIPLE

PHC Studio allows you to create multiple variables in one shot.

Open the POU for editing then choose the appropriate voice of the menu Variables>Create multiple .

PHC Studio will show you a dialog box where you must specify the prefix and the suffix to name of the new
variables.

1) Select the type of the variables.

2) Insert the number of the variables you want to create specifying the start index, the end index and the step
value. You can see an example of the generated variable names at the bottom of the dialog.

 D1WWTE04E34

PHC Studio

5.3 TASKS

5.3.1 ASSIGNING A PROGRAM TO A TASK

1) Select the task where you want to add the program from the project tree then choose the [Add program]
voice of the context menu.

2) Select the program you want to be executed by the task from the list which shows up and confirm your
choice.

3) The program has been assigned to the task, as you can see in the project tree.

 D1WWTE04E 35

PHC Studio

Note that you can assign more than a program to a task. From the contextual menu you can sort and, eventu-
ally, remove program assignments to tasks.

5.3.2 TASK CONFIGURATION

Depending on the target device you are interfacing with, you may have the chance to configure some of the PLC
tasks’ settings.

Select the tasks element from the project tree then choose the [Task configuration] voice of the context
menu.

In the Task configuration window you can edit the task execution period.

5.4 DERIVED DATA TYPES

The Definitions section of the Workspace window lets you define derived data types.

The derived data type is a complex classification that identifies one or various data types and is made up of
primitive data types.

User has the flexibility to create those own types that have advanced properties and uses far beyond those of
the basic primitive data types.

5.4.1 TYPEDEFS

The following paragraphs show you how to manage Typedefs.

PHC Studio can manage Typedefs, Structures, Enumeration and Subranges.

In order to create, edit or delete those data types, use the Definitions section of the Worskpace window.

5.4.1.1 CREATING A NEW TYPEDEF

In order to create a Typedef select TypeDefs folder item in the Definitions tree then choose the
 [New TypeDef] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new typedef and select the type
you are defining an alias for:

 D1WWTE04E36

PHC Studio

(if you want to define an alias for an array type, you shall choose the array size).

Enter a meaningful description (optional) and confirm the operation.

5.4.1.2 EDITING A TYPEDEF

In order to edit an existing typedef you have to double-click it from the Definitions tree. The associated
editor opens and lets you modify its definition.

5.4.1.3 DELETING A TYPEDEF

In order to delete a Typedef select it from the Definitions tree then choose the [Delete] voice of the
context menu.

5.4.2 STRUCTURES

The following paragraphs show you how to manage structures.

 D1WWTE04E 37

PHC Studio

5.4.2.1 CREATING A NEW STRUCTURE

In order to create a Structure select Structure folder item in the Definitions tree then choose the
[New Structure] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new structure and a meaningful
description, then confirm the operation.

5.4.2.2 EDITING A STRUCTURE

In order to edit an existing structure, open it by double-clicking it from the Definitions tree. The associated
editor opens and lets you modify its definition and fields.

5.4.2.3 DELETING A STRUCTURE

In order to delete an existing structure select it from Structures folder item in the Definitions tree then
choose the [Delete] voice of the context menu.

5.4.3 ENUMERATIONS

The following paragraphs show you how to manage enumerations.

5.4.3.1 CREATING A NEW ENUMERATION

In order to create an enumeration select Enumerations folder item in the Definitions tree then choose
the [New Enumeration] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new enumeration and a meaning-
ful description, then confirm the operation.

 D1WWTE04E38

PHC Studio

5.4.3.2 EDITING AN ENUMERATION

In order to edit an existing enumeration, open it by double-clicking it from the Definitions tree. The associ-
ated editor opens and lets you modify its definition and the initialization values of its elements.

5.4.3.3 DELETING AN ENUMERATION

In order to delete an existing enumeration select it from Enumeration folder item in the Definitions tree
then choose the [Delete] voice of the context menu.

5.4.4 SUBRANGES

The following paragraphs show you how to manage subranges.

5.4.4.1 CREATING A NEW SUBRANGE

In order to create a subrange select Subranges folder item in the Definitions tree then choose the
[New Subrange] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new subrange and select its
basic type.

 D1WWTE04E 39

PHC Studio

Enter minimum and maximum values of the subrange, a meaningful description (optional), and confirm the
operation.

5.4.4.2 EDITING A SUBRANGE

In order to edit an existing subrange, open it by double-clicking it from the Subranges folder of the Defini-
tions tree. The associated editor opens and lets you modify its definition.

5.4.4.3 DELETING A SUBRANGE

In order to delete an existing subrange select it from Subranges folder item in the Definitions tree then
choose the [Delete] voice of the context menu.

 D1WWTE04E40

PHC Studio

5.5 BROWSE THE PROJECT

Projects may grow huge, hence PHC Studio provides two tools to search for an object within a project: the Ob-
ject browser and the Find in project feature.

5.5.1 OBJECT BROWSER

PHC Studio provides a useful tool for browsing the objects of your project: the Object Browser.

This tool is context dependent, this implies that the kind of objects that can be selected and that the available
operations on the objects in the different contexts are not the same.

Object browser can be opened in these three main ways:

 - Browser mode.

 - Import object mode.

 - Select object mode.

User interaction with Object browser is mainly the same for all the three modes and is described in the
next paragraph.

5.5.1.1 COMMON FEATURES AND USAGE OF OBJECT BROWSER

This section describes the features and the usage of the Object browser that are common to every mode
in which Object browser can be used.

Objects filter

This is the main filter of the Object browser. User can check one of the available (enabled) object items.

In this example, Programs, Function Blocks, Functions are selected, so objects of this type are

 D1WWTE04E 41

PHC Studio

shown in the object list. Variables and User types objects can be selected by user but objects of that
type are not currently shown in the object list. Operators, Standard functions, Local vari-
ables, and Basic types cannot be checked by user (because of the context) so cannot be browsed.

User can also click Check all button to select all available objects at one time or can click Check none
button to deselect all objects at one time.

Other filters

Selected objects can be also filtered by name, symbol location, specific library and var type.

Filters are all additive and are immediately applied after setting.

Name

Function Filters objects on the base of their name.

Set of legal values All the strings of characters.

Use

Type a string to display the specific object whose name matches the
string. Use the * wildcard if you want to display all the objects whose
name contains the string in the Name text box. Type * if you want to
disable this filter.

Press Enter when edit box is focused or click on the OK button near the
edit box to apply the filter.

Applies to All object types.

Symbol location

Function Filters objects on the base of their location.

Set of legal values All, Project, Target, Library, Aux. Sources.

 D1WWTE04E42

PHC Studio

Use

All= Disables this filter.

Project= Objects declared in the PHC Studio project.

Target= Firmware objects.

Library= Objects contained in a library. In this case, use simultaneously
also the Library filter, described below.

Aux sources= Shows aux sources only.

Applies to All objects types.

Library

Function
Completes the specification of a query on objects contained in libraries.
The value of this control is relevant only if the Symbol location
filter is set to Library.

Set of legal values All, libraryname1, libraryname2, ...

Use
All= Shows objects contained in whatever library.

LibrarynameN= Shows only the objects contained in the library named
librarynameN.

Applies to All objects types.

 D1WWTE04E 43

PHC Studio

Vars Type

Function Filters global variables and system variables (also known as firmware
variables) according to their type.

Set of legal values All, Normal, Constant, Retain

Use

All= Shows all the global and system variables.

Normal= Shows normal global variables only.

Constant= Shows constants only.

Retain= Shows retain variables only.

Applies to Variables.

 D1WWTE04E44

PHC Studio

Object list

Object list shows all the filtered objects. List can be ordered in ascending or descending way by clicking
on the header of the column. So it is possible to order items by Name, Type, or Description.

Double-clicking on an item allows the user to perform the default associated operation (the action is the same
of the OK, Import object, or Open source button actions).

When item multiselection is allowed, Select all and Select none buttons are visible.

It is possible to select all objects by clicking on Select all button. Select none deselects all objects.

If at least one item is selected on the list operation, buttons are enabled.

Resize
Window can be resized, the cursor changes along the border of the dialog and allows the user to resize window.
When reopened, Object browser dialog takes the same size and position of the previous usage.

5.5.1.2 USING OBJECT BROWSER AS A BROWSER

In order to use the object browser to simply look over through the element of the project choose the appropriate
voice of the menu Project > Object Browser .

Available objects
In this mode you can list objects of these types:

 D1WWTE04E 45

PHC Studio

 - Programs.

 - Function Blocks.

 - Functions.

 - Variables.

 - User types.

These items can be checked or unchecked in Objects filter section to show or to hide the objects of the
chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) cannot be browsed in this
context so they are unchecked and disabled).

Available operations
Allowed operations in this mode are:

Open source, default operation for double-click on an item

Function Opens the editor by which the selected object was created and displays
the relevant source code.

Use

If the object is a program, or a function, or a function block, this button
opens the relevant source code editor.

If the object is a variable, then this button opens the variable editor.

Select the object whose editor you want to open, then click on the Open
source button.

Export to library

Function Exports an object to a library.

Use Select the objects you want to export, then press the Export to
library button.

Delete objects

Function Allows you to delete an object.

Use Select the object you want to delete, then press the Delete object
button.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

5.5.1.3 USING OBJECT BROWSER FOR IMPORT

Object browser is also used to support objects importation in the project from a desired external library.

In order to use the object browser to import external library to the project choose the appropriate voice of the
menu Project>Import object from library .

Available objects
In this mode you can list objects of these types:

 - Programs.

 - Function blocks.

 - Functions.

 - Variables.

 - User types.

 D1WWTE04E46

PHC Studio

These items can be checked or unchecked in Objects filter section to show or to hide the objects of the
chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) cannot be imported so they
are unchecked and disabled.

Available operations

Import objects is the only operation supported in this mode. It is possible to import selected objects by
clicking on Import objects button or by double-clicking on one of the objects in the list.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

5.5.1.4 USING OBJECT BROWSER FOR OBJECT SELECTION

Object browser dialog is useful for many operations that requires the selection of a single PLC object. So Object
browser can be used to select the program to add to a task, to select the type of a variable, to select an item
to find in the project, etc..

Available objects
Available objects are strictly dependent on the context, for example in the program assignment to a task opera-
tion the only available objects are programs objects.

It is possible that not all available objects are selected by default.

Available operations

In this mode it is possible to select a single object by double-clicking on the list or by clicking on the OK button,
then the dialog is automatically closed.

Multi selection

Multi selection is not allowed for this mode, Select all and Select none buttons are not visible.

5.5.2 SEARCH WITH THE FIND IN PROJECT COMMAND

The Find in project command retrieves all the instances of a specified character string in the project.

In order to use this functionality choose the appropriate voice of the menu Edit > Find in project .

PHC Studio will show you the following dialog box:

 D1WWTE04E 47

PHC Studio

1) In the Find what text box, type the name of the object you want to search.

Otherwise, click the Browse button to the right of the text box, and select the name of the object from
the list of all the existing items.

2) Select one of the values listed in the Location combo box, so as to specify a constraint on the location
of the objects to be inspected.

3) The frame named Filters contains 7 checkboxes, each of which, if ticked, enables research of the
string among the object it refers to.

4) Tick Match whole word only if you want to compare your string to entire word only.

5) Tick Match case if you want your search to be case-sensitive.

6) Press Find to start the search, otherwise click Cancel to abandon.

The results will be printed in the Find in project tab of the Output window.

 D1WWTE04E48

PHC Studio

5.6 WORKING WITH PHC STUDIO EXTENSIONS

PHC Studio’s Workspace window may include a section whose contents completely depend on the target de-
vice the IDE is interfacing with: the Resources panel.

If the Resources panel is visible, you can access some additional features related to the target device (con-
figuration elements, schemas, wizards, and so on).

Information about these features may be found in a separate document: refer to your hardware supplier for
details.

 D1WWTE04E 49

PHC Studio

5.7 PROJECT CUSTOM WORKSPACE

The custom workspace functionalities allow you to organize your project tree according to your needs, in order
to obtain more efficiency in the management of the project.

All organizationals units of the custom workspace are logical: creating and editing those units will no triggers
any effects on the PLC code.

5.7.1 ENABLE THE CUSTOM WORKSPACE INTO AN EXISTING PROJECT

To enable this feature see the Project>Options... (see Paragraph 4.6.1), once enabled the project needs to
be reloaded.

By default this features is enabled depending on targets.

5.7.2 WORKSPACES MIGRATION

Whenever this feature is switched, PHC Studio tries to reorder the workspace maintaining the user customiza-
tion by this logic:

Static (old) workspace to custom (new)
Fixed logic units (Ex. Function blocks folder) are converted into new dynamic folders with the same names.
Fixed global group units (Ex. Mapped variables) are converted into new global dynamic groups with the same
names. All global variables that do not belong to any group will be grouped into a new group called Ungrouped
global vars.

Custom (new) workspace to static (old)
All custom units will be destroyed and all POUs and global variables will be grouped into the default fixed units
(Ex. Function blocks folder and Mapped Variables).

 D1WWTE04E50

PHC Studio

5.7.3 CUSTOM WORKSPACE BASIC UNITS

In the new custom workspace you can work using two different main logic units:

 - Folder: this is an optional logical unit that can contain POUs, folders (you can nest folders into another one)
and global variables group.

 - Global variables group: this is a mandatory logical unit that can only contain global variables. In
order to create a global variable you need to have almost one global variables group defined into your custom
workspace.

5.7.4 CUSTOM WORKSPACE OPERATIONS

Different useful operations can be performed in order to give a better organization of your project.

Creating a folder

In order to create a folder select the root item of the project tree or, if you want to nest it, an
existing folder then choose the [Add>New folder] voice of the context menu.

This operation adds a new customizable folder (by default named New folder) unit ready to be
renamed.

Creating a Global variables Group
In order to create a global variables group select the root item of the project tree or, if you want to nest it, an
existing folder the [Add>New global variables group] voice of the context menu.

This operation adds a new customizable folder (by default named New var group) unit ready to be renamed.

Rename a unit (folder or Global variables group)
In order to rename a global variables group or a folder select it than choose [Rename] voice of the context
menu.

This operations makes the name of the unit ready to be renamed.

Deleting a unit (folder or Global variables group)
In order to delete a global variables group or a folder select it than choose [Delete] voice of the context menu.

If the units contains any child you will be prompted for three possibilities:

1) Delete all child elements too (this may impact the PLC).

2) Do not delete child elements, they will be moved upwards following the project tree.

3) Cancel the operations and do nothing.

Export all children to library
In order to export all elements of a global variables group or a folder select it than choose
[Export all children to library] voice of the context menu.

This operation allows you to export recursively all child elements of the selected item into a library (see 4.8.2
for more information about new library).

Moving Unit
You can simply drag&drop units to a different location of the tree in order to organize your project workspace.
All children are moved if the parent item is moved, following the original structure.

Moving variables is also possible both from project tree (single selection) and from the variable grid (single and
multiple selections) (see Paragraph 6.6 for more information about variables editor).

 D1WWTE04E 51

PHC Studio

5.7.5 WORKSPACE ELEMENTS WITH LIMITATIONS

Some elements of the workspace are fixed and not customizable. They are automatically generated by PHC Studio
and no special custom operations are allowed on.

Root Project Element
You can not move, rename or delete this element. It can contain customizable units as children.

POUs Children Elments
These elements are generated following the structure of the POU they belong to. You can not move, rename or
delete these elements directly from the tree. For more information about POUs (see Paragraph 5.1).

SFC Children Elements
These elements follow the aforesaid rules but especially for the SFC children nodes the rename or delete opera-
tions are not allowed also on the POUs that belong to Actions or Transitions elements. For more information
about SFC language (see Paragraph 6.5).

Aux Variables Element
You can not move, rename or delete this element and his children. They are automatically generated by
PHC Studio.

Tasks Element
You can not move, rename or delete these elements. They are automatically generated by PHC Studio. For more

information about SFC language (see Paragraph 5.3).

 D1WWTE04E52

PHC Studio

6. EDITING THE SOURCE CODE

PLC editors
PHC Studio includes five source code editors, which support the whole range of IEC 61131-3 programming lan-
guages: Instruction List (IL), Structured Text (ST), Ladder Diagram (LD), Function Block Diagram (FBD), and
Sequential Function Chart (SFC).

Moreover, PHC Studio includes a grid-like editor to support the user in the definition of variables.

All editors, both graphical and text one, support tooltips. By enabling them (see Paragraph 3.6.1.4), PHC Studio
will show some information about symbols on which the user move the mouse.

This chapter focuses on all these editors.

6.1 INSTRUCTION LIST (IL) EDITOR

The IL editor allows you to code and modify POUs using IL (i.e., Instruction List), one of the IEC-compliant
languages.

6.1.1 EDITING FUNCTIONS

The IL editor is endowed with functions common to most editors running on a Windows platform, namely:

 - Text selection.

 - Edit>Cut .
 - Edit>Copy .

 - Edit>Paste .
 - Edit>Replace .

 - Drag-and-drop of selected text.

6.1.2 REFERENCE TO PLC OBJECTS

If you need to add to your IL code a reference to an existing PLC object, you have two options:

 - You can type directly the name of the PLC object.

 - You can drag it to a suitable location. For example, global variables can be taken from the Workspace win-
dow, whereas standard operators and embedded functions can be dragged from the Libraries window,
whereas local variables can be selected from the local variables editor.

 D1WWTE04E 53

PHC Studio

6.1.3 AUTOMATIC ERROR LOCATION

The IL editor also automatically displays the location of compiler errors. To know where a compiler error oc-
curred, double-click the corresponding error line in the Output bar.

6.1.4 BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a bookmark is set, you can
use a keyboard command to move to it. You can remove a bookmark when you no longer need it.

6.1.4.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press Ctrl+F2. The line is marked
in the margin by a light-blue circle.

6.1.4.2 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line

6.1.4.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+ F2.

6.2 STRUCTURED TEXT (ST) EDITOR

The ST editor allows you to code and modify POUs using ST (i.e. Structured Text), one of the IEC-compliant
languages.

6.2.1 CREATING AND EDITING ST OBJECTS

See the Creating and Editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

6.2.2 EDITING FUNCTIONS

The ST editor is endowed with functions common to most editors running on a Windows platform, namely:

 - Text selection.

 - Edit>Cut .

 - Edit>Copy
 - Edit>Paste .

 - Edit>Replace .
 - Drag-and-drop of selected text.

 D1WWTE04E54

PHC Studio

6.2.3 REFERENCE TO PLC OBJECTS

If you need to add to your ST code a reference to an existing PLC object, you
have two options:
 - You can type directly the name of the PLC object.

 - You can drag it to a suitable location. For example, global variables can be taken from the Workspace win-
dow, whereas embedded functions can be dragged from the Libraries window, whereas local variables
can be selected from the local variables editor.

6.2.4 AUTOMATIC ERROR LOCATION

The ST editor also automatically displays the location of compiler errors. To know where a compiler error has
occurred, double-click the corresponding error line in the Output bar.

6.2.5 BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a bookmark is set, you can
use a keyboard command to move to it. You can remove a bookmark when you no longer need it.

6.2.5.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press Ctrl+F2. The line is marked
in the margin by a light-blue circle.

6.2.5.2 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line.

6.2.5.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+F2.

 D1WWTE04E 55

PHC Studio

6.3 LADDER DIAGRAM (LD) EDITOR

The LD editor allows you to code and modify POUs using LD (i.e. Ladder Diagram), one of the IEC-compliant
languages.

6.3.1 CREATING A NEW LD DOCUMENT

See the Creating and Editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

6.3.2 ADDING/REMOVING NETWORKS

Each POU coded in LD consists of a sequence of networks. A network is defined as a maximal set of intercon-
nected graphic elements. The upper and lower bounds of every network are fixed by two straight lines, while
each network is delimited on the left by a grey raised button containing the network number.

On each LD network the right and the left power rail are represented, according to the LD language indication.

On the new LD network a horizontal line links the two power rails. It is called the “power link”. On this link, all
the LD elements (contacts, coils and blocks) have to be placed.

You can perform the following operations on networks:

 - To add a new blank network, click Scheme>Network>New , or press one of the equivalent buttons in the
Network toolbar.

 - To assign a label to a selected network, give the Scheme>Network>Label . This enables jumping to the
labeled network.

 - To display a background grid which helps you to align objects, click View>Grid .

 - To add a comment, click Scheme>Object>New Comment .

 D1WWTE04E56

PHC Studio

6.3.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which transfers the program
control to a labeled network. To assign a label to a network, double-click the raised grey button on the left, which
bears the network number.

This causes a dialog box to appear, where you can type the label you want to associate with the selected net-
work.

If you press OK, the label is printed in the top left-hand corner of the selected network.

6.3.4 INSERTING CONTACTS

To insert new contacts on the network apply one of the following options:

 - Select a contact, a block, a pin of block, or a connection point, that will act as the insertion point. Insert
the new contact choosing between the connection type (serial or parallel) and choosing the position (before
or after the currently selected object) by using the Sheme>Object>New . For serial insertion, the new
contact will be inserted on the left or right side of the selected contact/block or in the middle of the selected
connection depending on the element selected before the insertion. For parallel insertions, several contacts
can be selected before performing the insertion; the new contact will be inserted above or below the group
of selected contacts.

 D1WWTE04E 57

PHC Studio

 - Drag a boolean variable to the desired place over an object. For example, global variables can be taken from

the Workspace window, whereas local variables can be selected from the local variables editor. Contacts
inserted with drag and drop will always be inserted in series after the destination object.

6.3.5 INSERTING COILS

To insert new coils on the network apply one of the following options:

 - Click Scheme>Object>New>Coil . The new coil will be inserted and linked to the right power rail. If
other coils, return or jumps are already present in the network, the new coil will be added in parallel with the
previous ones.

 - Drag a boolean variable on the network, over an existing output of the network (coil, return, jump). For ex-

ample, global variables can be taken from the Workspace window, whereas local variables can be selected
from the local variables editor.

6.3.6 INSERTING BLOCKS

To insert blocks on the network apply one of the following options:

 - Select a contact, connection or block then click Scheme>Object>New>Block , which causes a dialog
box to appear listing all the objects of the project, then choose one item from the list.

 - Drag the selected object (from the Workspace window, the Libraries window or the local variables
editor) over the desired connection.

If the object has at least one BOOL input and one BOOL output pins, they will be connected to the power link
(and it will possible to add EN/ENO pins later with the provided command); otherwise the EN/ENO pins will
be automatically added.

Operators, functions and function blocks can only be inserted into an LD network on the main power link, or on
the power link of a branch (so they can not be inserted on the parallel of a contact); it is also not possible to
create a contact in parallel of a block.

If a block has a BOOL input pin, it is possible to create another logical sub-network of contacts and blocks before
it; otherwise, you can connect only variables, constants or expressions (that nevertheless can be connected to
BOOL pins) to non-BOOL input pins.

 D1WWTE04E58

PHC Studio

6.3.7 EDITING COILS AND CONTACTS PROPERTIES

The type of a contact (normal, negated, positive, negative) or a coil (normal, negated, set, reset, positive, nega-
tive) can be changed by one of the following operations:

 - Double-click on the element (contact or coil).

 - Select the element and then press the Enter key.

 - Select the element, activate the pop-up menu, then select [Properties] .

An apposite dialog box will appear. Select the desired element type from the presented list and then press OK.

Otherwise, select the desired contact or coil, and change its type using the six provided buttons in the LD toolbar
or the six commands in the Scheme menu.

6.3.8 EDITING NETWORKS

The LD editor is endowed with functions common to most graphic applications running on a Windows platform,
namely:

 - Selection of a block.

 - Selection of a set of adjacent contacts by pressing Ctrl+Left button on each contact to select; if the
selection spans across different parallel branches, more contacts will be automatically added in the selection.

 - Edit>Cut , Edit>Copy , Edit>Paste operations of a single block as well as of a set of blocks.

 - Drag-and-drop of the selected object or group, to move it inside or outside the current network.

Adding, moving, deleting or copy/pasting objects will automatically recalculate the layout of the network ob-
jects; because of this, it is not possible to manually “draw” connection lines or freely placing objects without
connecting them to the network.

6.3.9 MODIFYING PROPERTIES OF BLOCKS

 - Click Scheme>Increment pins , to increment the number of input pins of some operators and embed-
ded functions.

 - Click Scheme>Enable EN/ENO pins , to display the enable input and output pins.

EN/ENO pins can be removed only if the selected block has at least one BOOL input and one BOOL output;
otherwise, they will be automatically added when creating the block and it will not be possible to remove them
(the Enable EN/ENO pins command will be disabled).

If a block has more than one BOOL output pin, it is possible to choose which pin will bring the signal out of the
block and so continue the power link: select the desired output pin and click the Scheme>Set output line
menu command.

 - Click Scheme>Object>Instance name , to change the name of an instance of a function block.

 D1WWTE04E 59

PHC Studio

6.3.10 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an LD document, by selecting it and then perform-
ing one of the following operations:

 - click Scheme>Object>Open source , to open the source code of a block.

 - Click Scheme>Object properties in the menu, to see properties and input/output pins of the selected
block.

6.3.11 AUTOMATIC ERROR RETRIEVAL

The LD editor also automatically displays the location of compiler errors. To reach the block where a compiler
error occurred, double-click the corresponding error line in the Output bar.

6.3.12 INSERTING VARIABLES

To connect a variable to an input or output pin of a block apply one of the following options:

 - select the pin of a block, and then click the Scheme>Object>New>Variable menu command; then
double-click the new variable object (or press ENTER) and enter the variable name.

 - Drag the selected variable (from the Workspace window, the Libraries window or the local variables
editor) over the desired pin of a block.

6.3.13 INSERTING CONSTANTS

To connect a numeric constant to an input pin of block, select the pin and click the
 Scheme>Object>New>Constant menu command; then double-click the new constant object (or press
ENTER) and enter the numeric constant value.

6.3.14 INSERTING EXPRESSION

To connect a complex expression to an input pin of block, select the pin and click the
 Scheme>Object>New>Expression menu command; then double-click the new expression object (or

press ENTER) and enter any ST expression:

(a+b)*c

TO_INT(n)

ADR(x)

 D1WWTE04E60

PHC Studio

6.3.15 COMMENTS

It is possible to insert two types of comments:

 - network comments: activate the network by clicking on the header on the left or inside the grid (but with-
out selecting any object), and then click the Scheme>Object>New>Comment menu command. The
network comment will be displayed at the top of the network, and if necessary will be expanded to show all
the text lines of the comment.

 - Object comments: they are activated with the apposite menu command in
View>Show comments for objects ; above any contact, function block or coil the description of the as-

sociated PLC variable (if present) will be initially shown, but with the Comment command you can modify it
to enter a specific object comment that will override the PLC variable description.

6.3.16 BRANCHES

The main power line can be branched to create sub-networks, that can be further branched themselves: to add a
branch, select the object after you want to create the branch and then click the Scheme>Object>New>Branch
menu command.

The start of the new branch is marked as a big dot on the source line; deleting all objects on a branch deletes
the branch itself.

Selecting an object on a branch effectively selects the branch, so for example selecting a contact on a branch
and then clicking the Scheme>Object>New>Coil adds the coil on the branch instead of adding it on the
main power line.

 D1WWTE04E 61

PHC Studio

6.4 FUNCTION BLOCK DIAGRAM (FBD) EDITOR

The FBD editor allows you to code and modify POUs using FBD (i.e. Function Block Diagram), one of the IEC-
compliant languages.

6.4.1 CREATING A NEW FBD DOCUMENT

See the Creating and editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

6.4.2 ADDING/REMOVING NETWORKS

Every POU coded in FBD consists of a sequence of networks. A network is defined as a maximal set of intercon-
nected graphic elements. The upper and lower bounds of every network are fixed by two straight lines, while
each network is delimited on the left by a grey raised button containing the network number.

 D1WWTE04E62

PHC Studio

You can perform the following operations on networks:

 - To add a new blank network, click Scheme>Network>New .

 - To assign a label to a selected network, give the Scheme>Network>Label command. This enables jump-
ing to the labeled network.

 - To display a background grid which helps you to align objects, click View>View greed .

 - To add a comment, click Scheme>Object>New>Comment .

6.4.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which transfers the program
control to a labeled network. To assign a label to a network, double-click the raised grey button on the left, that
bears the network number.

This causes a dialog box to appear, which lets you type the label you want to associate with the selected network.

If you press OK, the label is printed in the top left-hand corner of the selected network.

6.4.4 INSERTING AND CONNECTING BLOCKS

This paragraph shows you how to build a network.

Add a block to the blank network, by applying one of the following options:

 - Click Scheme>Object>New>Function Block which causes a dialog box to appear listing all the objects
of the project, then choose one item from the list. If the block is a constant, a return statement, or a jump
statement, you can directly press the relevant buttons in the FBD toolbar.

 - Drag the selected object to the suitable location. For example, global variables can be taken from the Work-
space window, whereas standard operators and embedded functions can be dragged from the Libraries
window, whereas local variables can be selected from the local variables editor.

Repeat until you have added all the blocks that will make up the network.

Then connect blocks:

 - Click Edit>Connection mode , or simply press the space bar of your keyboard. Click once the source
pin, then move the mouse pointer to the destination pin: the FBD editor draws a logical wire from the former
to the latter.

 - If you want to connect two blocks having a one-to-one correspondence of pins, you can enable the auto con-
nection mode by clicking Scheme>Auto connect . Then take the two blocks, drag them close to each
other so as to let the corresponding pins coincide. The FBD editor automatically draws the logical wires.

 D1WWTE04E 63

PHC Studio

If you delete a block, its connections are not removed automatically, but they become invalid and they are re-
drawn red. Click Scheme>Delete invalid connection .

6.4.5 EDITING NETWORKS

The FBD editor is endowed with functions common to most graphic applications running on a Windows platform,
namely:

 - Selection of a block.

 - Selection of a set of blocks by pressing Shift + left button and by drawing a frame including the blocks to
select.

 - Edit>Cut , Edit>Copy , Edit>Paste operations of a single block as well as of a set of blocks.

 - Drag-and-drop.

6.4.6 MODIFYING PROPERTIES OF BLOCKS

 - Click Scheme>Increment pins , to increment the number of input pins of some operators and embed-
ded functions.

 - Click Scheme>Enable EN/ENO pins , to display the enable input and output pins.

 - Click Scheme>Object>Instance name , or click Scheme>Object properties , to change the name

of an instance of a function block.

6.4.7 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an FBD document, by selecting it and then perform-
ing one of the following operations:

 - Click Scheme>Object>Open source , to open the source code of a block.

 - Click Scheme>Object properties , to see properties and input/output pins of the selected block.

6.4.8 AUTOMATIC ERROR RETRIEVAL

The FBD editor also automatically displays the location of compiler errors. To reach the block where a compiler
error occurred, double-click the corresponding error line in the Output bar.

 D1WWTE04E64

PHC Studio

6.5 SEQUENTIAL FUNCTION CHART (SFC) EDITOR

The SFC editor allows you to code and modify POUs using SFC (i.e. Sequential Function Chart), one of the IEC-
compliant languages.

6.5.1 CREATING A NEW SFC DOCUMENT

See the creating and editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

6.5.2 INSERTING A NEW SFC ELEMENT

 - Click Scheme>Object>New>Step .

 - Click Scheme>Object>New>transition .

 - Click Scheme>Object>New>Jump .

In either case, the mouse pointer changes to:

 for steps;

 for transitions;

 for jumps.

6.5.3 CONNECTING SFC ELEMENTS

Follow this procedure to connect SFC blocks:

 - Click Edit>Connection mode , or simply press the space bar on your keyboard. Click once the source
pin, then move the mouse pointer to the destination pin: the SFC editor draws a logical wire from the former
to the latter.

 - Alternatively, you can enable the auto connection mode by clicking Scheme>Auto connect Then take
the two blocks, and drag them close to each other so as to let the respective pins coincide, which makes the
SFC editor draw automatically the logical wire.

6.5.4 ASSIGNING AN ACTION TO A STEP

This paragraph explains how to implement an action and how to assign it to a step.

6.5.4.1 WRITING THE CODE OF AN ACTION

To start implementing an action, you need to open an editor. Do it by applying one of the following procedures:

 - Click Scheme>Code object>New action .

 - Right-click on the name of the SFC POU in the Workspace window [New action] .

 D1WWTE04E 65

PHC Studio

In either case, PHC Studio displays a dialog box like the one shown below.

Select one of the languages and type the name of the new action in the text box at the bottom of the dialog box.
Then either confirm by pressing OK, or quit by clicking Cancel.

If you press OK, PHC Studio opens automatically the editor associated with the language you selected in the
previous dialog box and you are ready to type the code of the new action.

Note that you are not allowed to declare new local variables, as the module you are now editing is a component
of the original SFC module, which is the POU where local variables can be declared. The scope of local variables
extends to all the actions and transitions making up the SFC diagram.

6.5.4.2 ASSIGNING AN ACTION TO A STEP

When you have finished writing the code, double-click the step you want to assign the new action to. This causes
the following dialog box to appear.

From the list shown in the Code N box, select the name of the action you want to execute if the step is active.
You may also choose, from the list shown in the Code P (Pulse) box, the name of the action you want to
execute each time the step becomes active (that is, the action is executed only once per step activation, regard-
less of the number of cycles the step remains active). Confirm the assignments by pressing OK.

In the SFC schema, action to step assignments are represented by letters on the step block:

 - action N by letter N in the top right corner;

 - action P by letter P in the bottom right corner.

 D1WWTE04E66

PHC Studio

If later you need to edit the source code of the action, you can just double-click these letters. Alternatively, you
can double-click the name of the action in the Actions folder of the Workspace window.

6.5.5 SPECIFYING A CONSTANT/A VARIABLE AS THE CONDITION OF A TRANSITION

As stated in the relevant section of the language reference, a transition condition can be assigned through a con-
stant, a variable, or a piece of code. This paragraph explains how to use the first two means, while conditional
code is discussed in the next paragraph.

First of all double-click the transition you want to assign a condition to. This causes the following dialog box to
appear.

Select True if you want this transition to be constantly cleared, False if you want the PLC program to keep
executing the preceding block.

Instead, if you select Variable the transition will depend on the value of a Boolean variable. Click the cor-
responding bullet, to make the text box to its right available, and to specify the name of the variable.

To this purpose, you can also make use of the objects browser, that you can invoke by pressing the Browse
button shown here below.

Click OK to confirm, or Cancel to quit without applying changes.

6.5.6 ASSIGNING CONDITIONAL CODE TO A TRANSITION

This paragraph explains how to specify a condition through a piece of code, and how to assign it to a transition.

6.5.6.1 WRITING THE CODE OF A CONDITION

Start by opening an editor, following one of these procedures:

 - Click Scheme>Code object>New transition .

 - Right-click on the name of the SFC POU in the Workspace window [New transition] .

In either case, PHC Studio displays a dialog box similar the one shown in the following picture.

 D1WWTE04E 67

PHC Studio

Note that you can use any language except SFC to code a condition. Select one of the languages and type the
name of the new condition in the text box at the bottom of the dialog box. Then either confirm by pressing OK,
or quit by clicking Cancel.

If you press OK, PHC Studio opens automatically the editor associated with the language you selected in the
previous dialog box and you can type the code of the new condition.

Note that you are not allowed to declare new local variables, as the module you are now editing is a component
of the original SFC module, which is the POU where local variables can be declared. The scope of local variables
extends to all the actions and transitions making up the SFC diagram.

6.5.6.2 ASSIGNING A CONDITION TO A TRANSITION

When you have finished writing the code, double-click the transition you want to assign the new condition to.
This causes the following dialog box to appear.

Select the name of the condition you want to assign to this step. Then confirm by pressing OK.

If later you need to edit the source code of the condition, you can double-click the name of the transition in the
Transitions folder of the Workspace window.

 D1WWTE04E68

PHC Studio

6.5.7 SPECIFYING THE DESTINATION OF A JUMP

To specify the destination step of a jump, double-click the jump block in the Chart area. This causes the dialog
box shown below to appear, listing the name of all the existing steps. Select the destination step, then either
press OK to confirm or Cancel to quit.

6.5.8 EDITING SFC NETWORKS

The SFC editor is endowed with functions common to most graphic applications running on a Windows platform,
namely:

 - Selection of a block.

 - Selection of a set of blocks by pressing Ctrl + left button.

 - Edit>Cut , Edit>Copy , Edit>Paste operations of a single block as well as of a set of blocks.

 - Drag-and-drop.

6.6 VARIABLES EDITOR

PHC Studio includes a graphical editor for both global and local variables that supplies a user-friendly interface
for declaring and editing variables: the tool takes care of the translation of the contents of these editors into
syntactically correct IEC 61131-3 source code.

As an example, consider the contents of the Global variables editor represented in the following figure.

The corresponding source code will look like this:

VAR_GLOBAL

 gA : BOOL := TRUE;

 gB : ARRAY[0..4] OF REAL;

 gC AT %MD60.20 : REAL := 1.0;

 END_VAR

 VAR_GLOBAL CONSTANT

 gD : INT := -74;

 END_VAR

 D1WWTE04E 69

PHC Studio

6.6.1 OPENING A VARIABLES EDITOR

6.6.1.1 OPENING THE GLOBAL VARIABLES EDITOR

In order to open the Global variables editor, double-click on Global variables in the project tree.

6.6.1.2 OPENING A LOCAL VARIABLES EDITOR

To open a local variables editor, just open the Program Organization Unit the variables you want to edit are local
to.

 D1WWTE04E70

PHC Studio

6.6.2 CREATING A NEW VARIABLE

In order to create a new variable, you may click Variables>Insert .

6.6.3 EDITING VARIABLES

Follow this procedure to edit the declaration of a variable in a variables editor (all the following steps are optional
and you will typically skip most of them when editing a variable):

1) Edit the name of the variable by entering the new name in the corresponding cell.

2) Change the variable type, either by editing the type name in the corresponding cell or by clicking on the
button in that cell and select the desired type from the list that pops up.

3) Edit the address of the variable by clicking on the button in the corresponding cell and entering the re-
quired information in the window that shows up. Note that, in the case of global variables, this operation
may change the position of the variable in the project tree.

 D1WWTE04E 71

PHC Studio

4) In the case of global variables, you can assign the variable to a group, by selecting it from the list which
opens when you click on the corresponding cell. This operation will change the position of the variable in
the project tree.

5) Choose whether a variable is an array or not; if it is, edit the size of the variable.

6) Edit the initial values of the variable: click on the button in the corresponding cell and enter the values in
the window that pops up.

7) Assign an attribute to the variable (for example, CONSTANT or RETAIN), by selecting it from the list which
opens when you click on the corresponding cell.

8) Type a description for the variable in the corresponding cell. Note that, in the case of global variables, this
operation may change the position of the variable in the project tree.

 D1WWTE04E72

PHC Studio

9) Save the project to persist the changes you made to the declaratn of the variable.

6.6.4 DELETING VARIABLES

In order to delete one or more variables, select them in the editor: you may use the CTRL or the SHIFT keys
to select multiple elements.

Then, click Variables>Delete .

Notice that you cannot delete the RESULT of an IEC61131-3 FUNCTION.

6.6.5 SORTING VARIABLES

You can sort the variables in the editor by clicking on the column header of the field you want to use as the
sorting criterion.

6.6.6 COPYING VARIABLES

The variables editor allows you to quickly copy and paste elements. You can either use keyboard shortcuts or
the Edit>Copy , Edit>Paste menu.
Note: overlapping addresses problems may occur by copying mapped variables. PHC Studio can

automatically assign new free address to the new pasted variable and fix the overlap. In
order to enable this functionality please refer to para graph 3.6 and 4.8.3.2 for further
details.

 D1WWTE04E 73

PHC Studio

 D1WWTE04E74

PHC Studio

7. COMPILING

Compilation consists of taking the PLC source code and automatically translating it into binary code, which can
be executed by the processor on the target device.

7.1 COMPILING THE PROJECT

Before starting actual compilation, make sure that at least one program has been assigned to a task.

When this pre-condition does not hold, compilation aborts with a meaningful error message.

In order to start compilation, click Project>Compile .
Note that PHC Studio automatically saves all changes to the project before starting the compilation.

7.1.1 IMAGE FILE LOADING

Before performing the actual compilation, the compiler needs to load the image file (img file), which
contains the map of memory of the target device. If the target is connected when compilation is started, the
compiler seeks the image file directly on the target. Otherwise, it loads the local copy of the image file from the
working folder. If the target device is disconnected and there is no local copy of the image file, compilation can-
not be carried out: you are then required to connect to a working target device.

7.2 COMPILER OUTPUT

If the previous step was accomplished, the compiler performs the actual compilation, then prints a report in the
Output window. The last string of the report has the following format:

m warnings, n errors
It tells the user the outcome of compilation.

Condition Description

n>0 Compiler error(s). The PLC code contains one or more serious errors, which cannot be
worked around by the compiler.

n=0, m>0

Emission of warning(s). The PLC code contains one or more minor errors, which
the compiler automatically spotted and worked around. However, you are informed
that the PLC program may act in a different way from what you expected: you are
encouraged to get rid of these warnings by editing and re-compiling the application
until no warning messages are emitted.

n=m=0 PLC code entirely correct, compilation accomplished. You should always work with 0
warnings, 0 errors.

 D1WWTE04E 75

PHC Studio

7.2.1 COMPILER ERRORS

When your application contains one or more errors, some useful information is printed in the Output window
for each of those errors.

As you can see, the information includes:

 - the name of the Program Organization Unit affected by the error;

 - the number of the source code line which procured the error;

 - whether it is a fatal error (error) or one that the compiler could work around (warning);

 - the error code;

 - the error description.

Refer to the appropriate section for the compiler error reference.

If you double-click the error message in the Output bar, PHC Studio opens the source code and highlights the
line containing the error.

 D1WWTE04E76

PHC Studio

You can then fix the problem and re-compile.

 D1WWTE04E 77

PHC Studio

7.3 COMMAND-LINE COMPILER

PHC Studio’s compiler can be used independently from the IDE: in PHC Studio’s directory, you can find an ex-
ecutable file, Command-line compiler, which can be invoked (for example, in a batch file) with a number
of options.

In order to get information about the syntax and the options of this command-line tool, just launch the execut-
able without parameters.

 D1WWTE04E78

PHC Studio

8. LAUNCHING THE APPLICATION

In order to download and debug the application, you have to establish a connection with the target device. This
chapter focuses on the operations required to connect to the target and to download the application, while the
wide range of PHC Studio’s debugging tools deserves a separate chapter (see Chapter 9).

8.1 SETTING UP THE COMMUNICATION

In order to establish the connection with the target device, make sure the physical link is up (all the cables are
plugged in, the network is properly configured, and so on).

Follow this procedure to set up and establish the connection to the target device:

1) Click On-line>Set up communication... menu of the PHC Studio main window. This causes the fol-
lowing dialog box to appear.

The elements in the list of communication protocols you can select from depend on the setup executable(s)
you have run on your PC (refer to your hardware provider if a protocol you expect to appear in the list is
missing).

2) Choose the appropriate protocol and make it the active protocol.

 D1WWTE04E 79

PHC Studio

3) Fill in all the protocol-specific settings (e.g., the address or the communication
timeout - that is how long PHC Studio must wait for an answer from the target before displaying a com-
munication error message).

4) Apply the changes you made to the communication settings.

Now you can establish communication by clicking On-line>Connect menu.

 D1WWTE04E80

PHC Studio

8.1.1 SAVING THE LAST USED COMMUNICATION PORT

When you connect to target devices using a serial port (COM port), you usually use the same port for all devices
(many modern PCs have only one COM port). You may save the last used COM port and let PHC Studio use that
port to override the project settings: this feature proves especially useful when you share projects with other
developers, which may use a different COM port to connect to the target device.

In order to save your COM port settings, enable the Use last port option in File>Options... menu.

8.2 ON-LINE STATUS

8.2.1 CONNECTION STATUS

The state of communication is shown in a small box next to the right border of the Status bar.

If you have not yet attempted to connect to the target, the state of communication is set to Not connected.

When you try to connect to the target device, the state of communication becomes one of the following:

 - Error: the communication cannot be established. You should check both the physical link and the communi-
cation settings.

 - Connected: the communication has been established.

8.2.2 APPLICATION STATUS

Next to the communication status there is another small box which gives information about the status of the
application currently executing on the target device.

When the connection status is Connected, the application status takes on one of the following values.

 - No code: no application is executing on the target device.

 - Diff. code: the application currently executing on the target device is not the same as the one currently
open in the IDE; moreover, no debug information consistent with the running application is available: thus,
the values shown in the watch window or in the oscilloscope are not reliable and the debug mode cannot be
activated.

 - Diff. code, Symbols OK: the application currently executing on the target device is not the same as the
one currently open in the IDE; however, some debug information consistent with the running application is
available (for example, because that application has been previously downloaded to the target device from
the same PC): the values shown in the watch window or in the oscilloscope are reliable, but the debug mode
still cannot be activated.

 - Source OK: the application currently executing on the target device is the same as the one currently open in
the IDE: the debug mode can be activated.

 D1WWTE04E 81

PHC Studio

8.3 DOWNLOADING THE APPLICATION

A compiled PLC application must be downloaded to the target device in order to have the processor execute it.
This paragraph shows you how to send a PLC code to a target device. Note that PHC Studio can download the
code to the target device only if the latter is connected to the PC where PHC Studio is running. See the related
section for details.

To download the application, click On-line>Download code .

PHC Studio checks whether the project has unsaved changes. If this is the case, it automatically starts the
compilation of the application. The binary code is eventually sent to the target device, which then undergoes
automatic reset at the end of transmission. Now the code you sent is actually executed by the processor on the
target device.

8.3.1 CONTROLLING SOURCE CODE DOWNLOAD

Whether the source code of the application is downloaded along with the binary code or not, depends on the
target device you are interfacing with: some devices host the application source code in their storage, in order
to allow the developer to upload the project in a later moment.

If this is the case, you can control some aspects of the source code download process, as explained in the fol-
lowing paragraphs.

 D1WWTE04E82

PHC Studio

8.3.1.1 PROTECTING THE SOURCE CODE WITH A PASSWORD

You may want to protect the source code downloaded to the target device with a password, so that PHC Studio
will not open the uploaded project unless the correct password is entered.

Click the Project>Options... menu and set the password.

You may opt to disable the password, instead.

 D1WWTE04E 83

PHC Studio

8.3.1.2 SOURCE CODE AND DEBUG SYMBOLS DOWNLOAD TIME

From the following select menu you can set the Source code download time.

Choosing:

 - On PLC application download: the Source code will be downloaded to the target together with PLC
application.

 - Before disconnection: the Source code will be downloaded before target disconnection.

 - Never: the Source code will be never downloaded to the target.

As well as Source code the Debug symbols download time can be set using the following select menu with the
same options.

 D1WWTE04E84

PHC Studio

8.4 SIMULATION

Depending on the target device you are interfacing with, you may be able to simulate the execution of the PLC
application with PHC Studio’s integrated simulation environment: SimuLab.

In order to start the simulation, just click Debug>Simulation mode .

Refer to SimuLab’s manual to gain information on how to control the simulation.

8.5 CONTROL THE PLC EXECUTION

The PLC application execution can be controlled using the related functions in the project bar or by the command
presents in the On-line menu.

8.5.1 HALT

You can stop the PLC execution by clicking On-line>Halt

8.5.2 COLD RESTART

The PLC application execution will be restarted and both retain and non-retain variables will be resetted.

You can cold restart the PLC execution by clicking On-line>Cold restart .

8.5.3 WARM RESTART

The PLC application execution will be restarted and only non-retain variables will be resetted.

You can warm restart the PLC execution by clicking On-line>Warm restart .

8.5.4 HOT RESTART

The PLC application execution will be restarted and no variables will be resetted.

You can hot restart the PLC execution by clicking On-line>Hot restart .

8.5.5 REBOOT TARGET

You can reboot the target by clicking On-line>Reboot target .

 D1WWTE04E 85

PHC Studio

 D1WWTE04E86

PHC Studio

9. DEBUGGING

PHC Studio provides several debugging tools, which help the developer to check whether the application be-
haves as expected or not.

All these debugging tools basically allow the developer to watch the value of selected variables while the PLC
application is running.

PHC Studio debugging tools can be gathered in two classes:

 - Asynchronous debuggers. They read the values of the variables selected by the developer with successive
queries issued to the target device. Both the manager of the debugging tool (that runs on the PC) and, po-
tentially, the task which is responsible to answer those queries (on the target device) run independently from
the PLC application. Thus, there is no guarantee about the values of two distinct variables being sampled in
the same moment, with respect to the PLC application execution (one or more cycles may have occurred); for
the same reason, the evolution of the value of a single variable is not reliable, especially when it changes fast.

 - Synchronous debuggers. They require the definition of a trigger in the PLC code. They refresh simultaneously
all the variables they have been assigned every time the processor reaches the trigger, as no further instruc-
tion can be executed until the value of all the variables is refreshed. As a result, synchronous debuggers obvi-
ate the limitations affecting asynchronous ones.

This chapter shows you how to debug your application using both asynchronous and synchronous tools.

9.1 WATCH WINDOW

The Watch window allows you to monitor the current values of a set of variables. Being an asynchronous tool,
the Watch window does not guarantee synchronization of values. Therefore, when reading the values of the
variables in the Watch window, be aware of the possibility that they may refer to different execution cycles of
the corresponding task.

The Watch window contains an item for each variable that you added to it. The information shown in the
Watch window includes the name of the variable, its value, its type, and its location in the PLC application.

9.1.1 OPENING AND CLOSING THE WATCH WINDOW

To open, close the Watch window, click View>Tool windows>Watch .

Closing the Watch window means simply hiding it, not resetting it. As a matter of fact, if you close the Watch
window and then open it again, you will see that it still contains all the variables you added to it.

9.1.2 ADDING ITEMS TO THE WATCH WINDOW

To watch a variable, you need to add it to the watch list.

Note that, unlike trigger windows and the Graphic trigger window, you can add to the Watch window
all the variables of the project, regardless of where they were declared.

 D1WWTE04E 87

PHC Studio

9.1.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a textual (that is, IL or ST) source code
editor: select a variable, by double-clicking on it, and then drag it into the watch window.

The same procedure applies to all the variables you wish to inspect.

9.1.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a graphical (that is, LD, FBD, or SFC) source
code editor:

1) Click Edit>Watch mode .

2) Click on the block representing the variable you wish to be shown in the Watch window.

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked on.

In order to display the variable in the Watch window, select Watch, then press OK.

 D1WWTE04E88

PHC Studio

The variable name, value, and location are now displayed in a new row of the Watch window.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Watch window all the variables you want to observe, you should click
 Edit>Insert/Move mode : the mouse cursor turns to its original shape.

9.1.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Watch window, you can select the corresponding record in the variables editor
and then either drag-and-drop it in the Watch window

or press the F8 key.

9.1.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Watch window, you can select it in the project tree and then either drag-and-
drop it in the Watch window

 D1WWTE04E 89

PHC Studio

or press the F8 key.

9.1.2.5 ADDING A VARIABLE FROM THE WATCH WINDOW TOOLBAR

You can also click on the appropriate item of the Watch window inner toolbar, in order to add a variable to it.

You shall type (or select by browsing the project symbols) the name of the variable and its location (where it
has been declared).

9.1.3 REMOVING A VARIABLE

If you want a variable not to be displayed any more in the Watch window, select it by clicking on its name
once, then press the Del key.

 D1WWTE04E90

PHC Studio

9.1.4 REFRESHMENT OF VALUES

9.1.4.1 NORMAL OPERATION

Let us consider the following example.

The watch window manager reads periodically from memory the value of the variables.

However, this action is carried out asynchronously , that is it may happen that a higher-priority task modifies the
value of some of the variables while they are being read. Thus, at the end of a refreshment process, the values
displayed in the window may refer to different execution states of the PLC code.

9.1.4.2 TARGET DISCONNECTED

If the target device is disconnected, the Value column contains three dots.

9.1.4.3 OBJECT NOT FOUND

If the PLC code changes and PHC Studio cannot retrieve the memory location of an object in the Watch win-
dow, then the Value column contains three dots.

If you try to add to the Watch window a symbol which has not been allocated, PHC Studio gives the following
error message.

 D1WWTE04E 91

PHC Studio

9.1.5 CHANGING THE FORMAT OF DATA

When you add a variable to the Watch window, PHC Studio automatically recognizes its type (unsigned integer,
signed integer, floating point, hexadecimal), and displays its value consistently. Also, if the variable is floating
point, PHC Studio assigns it a default number of decimal figures.

However, you may need the variable to be printed in a different format.

To impose another format than the one assigned by PHC Studio, press the Format value button in the
toolbar.

Choose the format and confirm your choice.

9.1.6 WORKING WITH WATCH LISTS

You can store to file the set of all the items in the Watch window, in order to easily restore the status of this
debugging tools in a successive working session.

Follow this procedure to save a watch list:

1) Click on the corresponding item in the Watch window toolbar.

 D1WWTE04E92

PHC Studio

2) Enter the file name and choose its destination in the file system.

You can load a watch list from file, removing the opened one, following this procedure:

1) Click on the corresponding icon in the Watch window toolbar.

2) Browse the file system and select the watch list file.

The set of symbols in the watch list is added to the Watch window.

You can load a watch list from file, appending to the opened one, following this procedure:

1) Click on the corresponding icon in the Watch window toolbar.

 D1WWTE04E 93

PHC Studio

2) Browse the file system and select the watch list file.

The set of symbols in the watch list is added to the Watch window.

You can clear the current opened watch list by clicking on the following icon:

9.1.7 AUTOSAVE WATCH LIST

By selecting the associated option in the project options dialog (see Paragraph 4.6.5 for more info) the watch
list will be automatically saved on the project closing.

The saved watch list will be automatically loaded (with no append option) on the first connection to target when
the project will be re-opened.

9.2 OSCILLOSCOPE

The Oscilloscope allows you to plot the evolution of the values of a set of variables. Being an asynchronous tool,
the Oscilloscope cannot guarantee synchronization of samples.

Opening the Oscilloscope causes a new window to appear next to the right-hand border of the PHC Studio frame.
This is the interface for accessing the debugging functions that the Oscilloscope makes available. The Oscillo-

 D1WWTE04E94

PHC Studio

scope consists of three elements, as shown in the following picture.

The toolbar allows you to better control the Oscilloscope. A detailed description of the function of each control
is given later in this chapter.

The Chart area includes several items:

 - Plot: area containing the curve of the variables.

 - Vertical cursors: cursors identifying two distinct vertical lines. The values of each variable at the intersection
with these lines are reported in the corresponding columns.

 - Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot area, the scroll bar allows
you to slide back and forth along the horizontal axis.

The lower section of the Oscilloscope is a table consisting of a row for each variable.

9.2.1 OPENING AND CLOSING THE OSCILLOSCOPE

To open, close the Oscilloscope, click View>Tool windows>Oscilloscope .

Closing the Oscilloscope means simply hiding it, not resetting it. As a matter of fact, if you open again the Oscil-
loscope after closing it, you will see that plotting of the curve of all the variables you added to it starts again.

9.2.2 ADDING ITEMS TO THE OSCILLOSCOPE

In order to plot the evolution of the value of a variable, you need to add it to the Oscilloscope.

Note that unlike trigger windows and the Graphic trigger window, you can add to the Oscilloscope all the
variables of the project, regardless of where they were declared.

 D1WWTE04E 95

PHC Studio

9.2.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a textual (that is, IL or ST) source code editor:
select a variable by double-clicking on it, and then drag it into the Oscilloscope window.

The same procedure applies to all the variables you wish to inspect.

9.2.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a graphical (that is, LD, FBD, or SFC) source
code editor:

1) Click Edit>Watch mode .

2) Click on the block representing the variable you wish to be shown in the Oscilloscope.

3) A dialog box appears listing all the currently existing instances of debug windows, and asking you which

one is to receive the object you have just clicked on.

Select Oscilloscope, the press OK. The name of the variable is now displayed in the Track column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Oscilloscope all the variables you want to observe, you should click
 Edit>Insert/Move mode : the mouse cursor turns to its original shape.

 D1WWTE04E96

PHC Studio

9.2.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Oscilloscope, you can select the corresponding record in the variables editor
and then either drag-and-drop it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which pops up.

9.2.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Oscilloscope, you can select it in the project tree and then either drag-and-drop
it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which pops up.

 D1WWTE04E 97

PHC Studio

9.2.3 REMOVING A VARIABLE

If you want to remove a variable from the Oscilloscope, select it by clicking on its name once, then press the
Del key.

9.2.4 VARIABLES SAMPLING

9.2.4.1 NORMAL OPERATION

The Oscilloscope manager periodically reads from memory the value of the variables.

However, this action is carried out asynchronously, that is it may happen that a higher-priority task modifies the
value of some of the variables while they are being read. Thus, at the end of a sampling process, data associated
with the same value of the x-axis may actually refer to different execution states of the PLC code.

9.2.4.2 TARGET DISCONNECTED

If the target device is disconnected, the curves of the dragged-in variables get frozen, until communication is
restored.

9.2.5 CONTROLLING DATA ACQUISITION AND DISPLAY

The Oscilloscope includes a toolbar with several commands, which can be used to control the acquisition process
and the way data are displayed. This paragraph focuses on these commands.

Note that all the commands in the toolbar are disabled if no variable has been added to the Oscilloscope.

9.2.5.1 STARTING AND STOPPING DATA ACQUISITION

When you add a variable to the Oscilloscope, data acquisition begins immediately.

However, you can suspend the acquisition by clicking on Pause acquisition.

 D1WWTE04E98

PHC Studio

The curve freezes (while the process of data acquisition is still running in background), until you click on Re-
start acquisition.

In order to stop the acquisition you may click on Stop acquisition.

In this case, when you click on Restart acquisition, the evolution of the value of the variable is plotted
from scratch.

9.2.5.2 SETTING THE SCALE OF THE AXES

When you open the Oscilloscope, PHC Studio applies a default scale to the axes. However, if you want to set a
different scale, you may follow this procedure:

1) Open the graph properties by clicking on the corresponding item in the toolbar.

 D1WWTE04E 99

PHC Studio

2) Set the scale of the horizontal axis, which is common to all the tracks.

3) For each variable, you may specify a distinct scale for the vertical axis.

4) Confirm your settings. The graph adapts to reflect the new scale.

 D1WWTE04E100

PHC Studio

You can also zoom in and out with respect to both the horizontal and the vertical axes.

Finally, you may also quickly adapt the scale of the horizontal axis, the vertical axis, or both to include all the
samples, by clicking on the corresponding item of the toolbar.

 D1WWTE04E 101

PHC Studio

9.2.5.3 VERTICAL SPLIT

When you are watching the evolution of two or more variables, you may want to split the respective tracks. For
this purpose, click on the Vertical split item in the Oscilloscope toolbar.

9.2.5.4 VIEWING SAMPLES

If you click on the Show samples item in the Oscilloscope toolbar, the tool highlights the single values
detected during data acquisition.

You can click on the same item again, in order to go back to the default view mode.

 D1WWTE04E102

PHC Studio

9.2.5.5 TAKING MEASURES

The Oscilloscope includes two measure bars, which can be exploited to take some measures on the chart; in
order to show and hide them, click on the Show measure bars item in the Oscilloscope toolbar.

If you want to measure a time interval between two events, you just have to move one bar to the point in the
graph that corresponds to the first event and the other to the point that corresponds to the second one.

The time interval between the two bars is shown in the top left corner of the chart.

You can use a measure bar also to read the value of all the variables in the Oscilloscope at a particular moment:
move the bar to the point in the graph which corresponds to the instant you want to observe.

 D1WWTE04E 103

PHC Studio

In the table below the chart, you can now read the values of all the variables at that particular moment.

9.2.5.6 OSCILLOSCOPE SETTINGS

You can further customize the appearance of the Oscilloscope by clicking on the Graph properties item
in the toolbar.

In the window that pops up you can choose whether to display or not the Background grid, the Time
slide bar, and the Track list.

 D1WWTE04E104

PHC Studio

9.2.6 CHANGING THE POLLING RATE

PHC Studio periodically sends queries to the target device, in order to read the data to be plotted in the Oscil-
loscope.

The polling rate can be configured by following this procedure:

1) Click on the Graph properties item in the toolbar.

2) In the window that pops up edit the Sampling polling rate.

3) Confirm your decision.

Note that the actual rate depends on the performance of the target device (in particular, on the performance of
its communication task). You can read the actual rate in the Oscilloscope settings window.

9.2.7 SAVING AND PRINTING THE GRAPH

PHC Studio allows you to persist the acquisition either by saving the data to a file or by printing a view of the
data plotted in the Oscilloscope.

9.2.7.1 SAVING DATA TO A FILE

You can save the samples acquired by the Oscilloscope to a file, in order to further analyze the data with other
tools.

1) You may want to stop acquisition before saving data to a file.

2) Click on the Save tracks data into file in the Oscilloscope toolbar.

 D1WWTE04E 105

PHC Studio

3) Choose between the available output file format: OSC is a simple plain-text file, containing time and value
of each sample; OSCX is an XML file, that includes more complete information, which can be further ana-
lyzed with another tool, provided separately from PHC Studio.

4) Choose a file name and a destination directory, then confirm the operation.

9.2.7.2 PRINTING THE GRAPH

Follow this procedure to print a view of the data plotted in the Oscilloscope:

1) Either suspend or stop the acquisition.

2) Move the time slide bar and adjust the zoom, in order to include in the view the elements you want to print.

3) Click on the Print graph item.

 D1WWTE04E106

PHC Studio

9.3 EDIT AND DEBUG MODE

While both the Watch window and the Oscilloscope do not make use of the source code, all the other debug-
gers do: when debug mode is on, changes to the source code are inhibited and debug tools become active.

PHC Studio automatically enables debug mode when at least one of the following conditions are met:

 - at least one breakpoint is correctly set.

 - At least one trigger (graphic or textual) is correctly set.

 - Live debug mode is on.

When all the conditions above are not met, the debug mode automatically switches off and PHC Studio enters
in edit mode.

The status bar shows whether the debug mode is active or not.

Note that you cannot enter the debug mode if the connection status differs from Connected.

9.4 LIVE DEBUG

PHC Studio can display meaningful animation of the current and changing state of execution over time of a Pro-
gram Organization Unit (POU) coded in any IEC 61131-3 programming language.

To switch on and off the live debug mode, you may click Debug>Live debug mode .

9.4.1 SFC ANIMATION

As explained in the relevant section of the language reference, an SFC POU is structured in a set of steps, each
of which is either active or inactive at any given moment. Once started up, this SFC-specific debugging tool
animates the SFC documents by highlighting the active steps.

Animation OFF Animation ON Animation ON in hold status

 D1WWTE04E 107

PHC Studio

In the left column, a portion of an SFC network is shown, diagram animation being off.

In the middle column the same portion of network is displayed when the live debug mode is active. The picture
in the middle column shows that steps S1 and S3 are currently active, whereas Init, S2, and S4 are inactive.

In the right column the same portion of network is displayed with steps S1 and S3 that are currently active but
in hold status.

This may occur in SFC blocks when they are children of a parent in inactive status.

Note that the SFC animation manager tests periodically the state of all steps, the user not being allowed to
edit the sampling period. Therefore, it may happen that a step remains active for a slot of time too short to be
displayed.

The fact that a step is never highlighted does not imply that its action is not executed, it may simply mean that
the sampling rate is too slow to detect the execution.

9.4.1.1 DEBUGGING ACTIONS AND CONDITIONS

As explained in the SFC language reference, a step can be assigned to an action, and a transition can be associ-
ated with a condition code. Actions and conditions can be coded in any of the IEC 61131-3 languages. General-
purpose debugging tools can be used within each action/condition, as if it was a stand-alone POU.

9.4.2 LD ANIMATION

In live debug mode, Ladder Diagram schemes are animated by highlighting the contacts and coils whose value
is true (in the example, i1 and i2).

Note that the LD animation manager tests periodically the state of all the elements. It may happen that an ele-
ment remains true for a slot of time too short to be displayed on the video. The fact that an element is never
highlighted does not imply that its value never becomes true (the sampling rate may be too slow).

9.4.3 FBD ANIMATION

In live debug mode, PHC Studio displays the values of all the visible variables directly in the graphical source
code editor.

This works for both FBD and LD programming language.

 D1WWTE04E108

PHC Studio

Note that, once again, this tool is asynchronous.

9.4.4 IL AND ST ANIMATION

The live debug mode also applies to textual source code editors (the ones for IL and ST). You can quickly watch
the values of a variable by hovering with the mouse over it.

9.5 TRIGGERS

9.5.1 TRIGGER WINDOW

The Trigger window tool allows you to select a set of variables and to have them updated synchronously
in a special pop-up window.

9.5.1.1 PRE-CONDITIONS TO OPEN A TRIGGER WINDOW

No need for special compilation
PHC Studio debugging tools operate at run-time. Thus, unlike other programming languages such as C++, the
compiler does not need to be told whether or not to support trigger windows: given a PLC code, the compiler’s
output is unique, and there is no distinction between debug and release version.

Memory availability
A trigger window takes a segment in the application code sector, having a well-defined length. Obviously, in
order to start up a trigger window, it is necessary that a sufficient amount of memory is available, otherwise an
error message appears.

Incompatibility with graphic trigger windows
A graphic trigger window takes the whole free space of the application code sector. Therefore, once such a
debugging tool has been started, it is not possible to add any trigger window, and an error message appears if
you attempt to start a new window. Once the graphic trigger window is eventually closed, trigger windows are
enabled again.

Note that all the trigger windows existing before the starting of a graphic trigger window keep working normally.
You are simply not allowed to add new ones.

9.5.1.2 TRIGGER WINDOW TOOLBAR

Trigger window icons are part of the Debug toolbar and are enabled only if PHC Studio is in debug mode.

 D1WWTE04E 109

PHC Studio

Button Command Description

Set/Remove trigger

In order to actually start a trigger window, select the point of
the PLC code where to insert the relative trigger and then press
this button. The same procedure applies to trigger window
removal: in order to definitely close a debug window, click
once the instruction/block where the trigger was inserted, then
press this button again.

Graphic trace

This button operates exactly as the above Set/Remove
trigger, except for that it opens a graphic trigger window. It
can be used likewise also to remove a graphic trigger window.
Shortcut key: pressing Shift + F9 is equivalent to clicking
on Set/Remove trigger button.

Remove all
triggers

Pressing this key causes all the existing trigger windows and
the graphic trigger window to be removed simultaneously.
Shortcut key: pressing Ctrl+Shift+F9 is equivalent to
clicking on this button.

Trigger list
This key opens a dialog listing all the existing trigger windows.
Shortcut key: pressing Ctrl+I is equivalent to clicking on
this button.

Each record refers to a trigger window, either graphic or textual. The following table explains the meaning of
each field.

Field Description

Type
T: trigger window.

G: graphic trigger window.

Module
Name of the program, function, or function block where the trigger is
placed. If the module is a function block, this field contains its name, not
the name of its instance where you actually put the trigger.

Line
For the textual languages (IL, ST) indicates the line in which the trigger is
placed. For the other languages the value is always -1.

 D1WWTE04E110

PHC Studio

9.5.1.3 TRIGGER WINDOW INTERFACE

Setting a trigger causes a pop-up window to appear, which is called Interface window: this is the interface
to access the debugging functions that the trigger window makes available. It consists of three elements, as
shown below.

Caption bar

The Caption bar of the pop-up window shows information on the location of the trigger which causes the
refresh of the Variables window, when reached by the processor.

The text in the Caption bar has the following format:

Trigger n° X at ModuleName#Location

where

X Trigger identifier.

ModuleName Name of the program, function, or function block where the trigger was
placed.

Location

Exact location of the trigger, within module ModuleName.

If ModuleName is in IL, Location has the following format:

N1

Otherwise, if ModuleName is in FBD, it becomes:

N2$BT:BID

where:

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, etc.)

BID = block identifier

Controls section
This dialog box allows the user to better control the refresh of the trigger window to get more information on
the code under scope. A detailed description of the function of each control is given in the Trigger window
controls section (see Paragraph 9.5.2.11).

All controls except Ac, the Accumulator display button, are not accessible until at least one variable is
dragged into the debug window.

The Variables section

This lower section of the Debug window is a table consisting of a row for each variable that you dragged in.

 D1WWTE04E 111

PHC Studio

Each row has four fields: the name of the variable, its value, its type, and its location (@task:ModuleName) read
from memory during the last refresh.

9.5.1.4 TRIGGER WINDOW: DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

This section is a table consisting of a row for each variable you dragged in. You can drag into the trigger window
only variables local to the module where you placed the relative trigger, or global variables, or parameters. You
cannot drag variables declared in another program, or function, or function block.

9.5.1.5 REFRESH OF THE VALUES

Let us consider the following example.

The value of variables is refreshed every time the window manager is triggered, that is every time the processor
executes the instruction marked by the green arrowhead. However, you can set controls in order to have vari-
ables refreshed only when triggers satisfy the more limiting conditions you define.

Note that the value of the variables in column Symbol is read from memory just before the marked instruction
(in this case: the instruction at line 5) and immediately after the previous instruction (the one at line 4) has
been performed.

Thus, in the above example the second ST statement has not been executed yet when the new value of a is read
from memory and displayed in the trigger window. Thus the result of the second ST a is 1.

 D1WWTE04E112

PHC Studio

9.5.1.6 TRIGGER WINDOW CONTROLS

This paragraph deals with the trigger window controls, which allows you to better supervise the working of this
debugging tool, to get more information on the code under scope.

Trigger window controls act in a well-defined way on the behavior of the window, regardless for the type of the
module (either IL or FBD) where the related trigger has been inserted.

All controls except the Accumulator display are not accessible until at least one variable is dragged into
the Variables window.

Window controls are made accessible to users through the grey top half of the debug window.

Button Command Description

Start/Stop

This control is used to start a triggering session. If system is
triggering you can click this button to force stop. Otherwise
session automatically stops when conditions are reached. At
this point you can press this button to start another triggering
session.

Single step
execution

This control is used to execute a single step trigger. It is
enabled only when there is no active triggering session and
None is selected. Specified condition is considered. After the
single step trigger is done, triggering session automatically
stops.

Accumulator
display

This control adds the Accumulator to the list of variables
already dragged into the trigger window. A new row is added
at the bottom of the table of variables, containing the string
Accumulator in column Symbol, the accumulator’s value
in column Value, Type is not specified and Location is
set to global as shown in the following figure.

 D1WWTE04E 113

PHC Studio

In order to remove the accumulator from the table, click its name in Symbol column, and press the Del key.

This control can be very useful if a trigger was inserted before a ST statement, because it allows you to know
what value is being written in the destination variable, during the current execution of the task. You can get the
same result by moving the trigger to an instruction following the one marked by the green arrowhead.

Trigger counter

This read-only control counts how many times the debug window manager has been triggered, since the window
was installed.

The window manager automatically resets this counter every time a new triggering session is started.

Trigger state

This read-only control shows the user the state of the Debug window. It can assume the following values.

The trigger has not occurred during the current task execution.

The trigger has occurred during the current task execution.

System is not triggering. Triggering has not been started yet or it has been
stopped by user or an halt condition has been reached.

Communication with target interrupted, the state of the trigger window cannot
be determined.

User-defined condition

If you define a condition by using this control, the values in the Debug window are refreshed every time the
window manager is triggered and the user-defined condition is true.

After you have entered a condition, the control displays its simplified expression.

 D1WWTE04E114

PHC Studio

Counters

These controls allow the user to define conditions on the trigger counter.

The trigger window can be in one of the following three states.

 - None: no counter has been started up, thus no condition has been specified upon the trigger.

 - For: assuming that you gave the counter limit the value N, the window manager adds 1 to the current value
of the counter and refreshes the value of its variables, each time the debug window is triggered. However,
when the counter equals N, the window stops refreshing the values, and it changes to the Stop state.

 - After: assuming that you gave the counter limit the value N, the window manager resets the counter and
adds 1 to its current value each time it is triggered. The window remains in the Ready state and does not
update the value of its variables until the counter reaches N.

9.5.2 DEBUGGING WITH TRIGGER WINDOWS

9.5.2.1 INTRODUCTION

The trigger window tool allows the user to select a set of variables and to have their values displayed and up-
dated synchronously in a pop-up window. Unlike the Watch window, trigger windows refresh simultaneously
all the variables they contain, every time they are triggered.

9.5.2.2 OPENING A TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

Let us also assume that you want to know the value of b, d, and k, just before the ST k instruction is executed.
To do so, move the cursor to line 12.

Then you can click Debug>Set/Remove trigger .

In both cases, a green arrowhead appears next to the line number, and the related trigger window pops up.

Not all the IL instructions support triggers. For example, it is not possible to place a trigger at the beginning of
a line containing a JMP statement.

 D1WWTE04E 115

PHC Studio

9.5.2.3 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN IL MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this purpose, select a
variable by double-clicking it, and then drag it into the Variables window, that is the lower white box in the
pop-up window. The variable’s name now appears in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

9.5.2.4 OPENING A TRIGGER WINDOW FROM AN FBD MULE

Let us assume that you have an FBD module, also containing the following instructions.

Let us also assume that you want to know the values of C, D, and K, just before the ST k instruction is executed.

 D1WWTE04E116

PHC Studio

Provided that you can never place a trigger in a block representing a variable such as

you must select the first available block preceding the selected variable. In the example of the above figure, you
must move the cursor to network 3, and click the ADD block.

You can click Debug>Set/Remove trigger .

In both cases, the color of the selected block turns to green, a white circle with a number inside appears in the
middle of the block, and the related trigger window pops up.

When preprocessing FBD source code, the compiler translates it into IL instructions. The ADD instruction in
network 3 is expanded to:

LD k

ADD 1

ST k
When you add a trigger to an FBD block, you actually place the trigger before the first statement of its IL equiva-
lent code.

9.5.2.5 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let us assume that you want
to inspect the value of variable k of the FBD code in the figure below.

To this purpose, click Edit>Watch mode .

The cursor will become as follows.

Now you can click the block representing the variable you wish to be shown in the trigger window.

 D1WWTE04E 117

PHC Studio

In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

In order to display the variable k in the trigger window, select its reference in the Debug windows column,
then press OK. The name of the variable is now printed in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
 Edit>Insert/Move mode , so as to let the cursor take back its original shape.

 D1WWTE04E118

PHC Studio

9.5.2.6 OPENING A TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

In this case, the same rules apply as to insert a trigger in an FBD module on a contact

or a coil

In this case, follow the SE instructions. Let us also assume that you want to know the value of some variables
every time the processor reaches network number 1.

First you must click one of the items making up network number 1. Now you can click
 Debug>Add/Remove text trigger .

In both cases, the grey raised button containing the network number turns to green, and a white circle with
the number of the trigger inside appears in the middle of the button, while the related trigger window pops up.

 D1WWTE04E 119

PHC Studio

Unlike the other languages supported by PHC Studio, LD does not allow you to insert a trigger into a single con-
tact or coil, as it lets you select only an entire network. Thus the variables in the trigger window will be refreshed
every time the processor reaches the beginning of the selected network.

9.5.2.7 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN LD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let us assume that you want
to inspect the value of variable b in the LD code represented in the figure below.

To this purpose, click Edit>Watch mode .

The cursor will become as follows.

Now you can click the item representing the variable you wish to be shown in the trigger window.

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

In order to display variable B in the trigger window, select its reference in the Debug window column, then
press OK.

The name of the variable is now printed in the Symbol column.

 D1WWTE04E120

PHC Studio

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
 Edit>Insert/Move mode , so as to restore the original shape of the cursor.

9.5.2.8 OPENING A TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the instruction

f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then you can click Debug>Add/Remove text trigger .

In both cases, a green arrowhead appears next to the line number, and the related trigger window pops up.

Not all the ST instructions support triggers. For example, it is not possible to place a trigger on a line containing
a terminator such as END_IF, END_FOR, END_WHILE, etc..

 D1WWTE04E 121

PHC Studio

9.5.2.9 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN ST MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this purpose, select a
variable, by double clicking it, and then drag it into the Variables window, that is the lower white box in the
pop-up window. The variable name now appears in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

9.5.2.10 REMOVING A VARIABLE FROM THE TRIGGER WINDOW

If you want a variable not to be displayed any more in the trigger window, select it by clicking its name once,
then press the Del key.

9.5.2.11 USING CONTROLS

This paragraph deals with trigger windows controls, which allow you to better supervise the working of this
debugging tool to get more information on the code under scope. The main purpose of trigger window controls
is to let you define more limiting conditions, so that variables in Variables window are refreshed when the
processor reaches the trigger location and these conditions are satisfied. If you do not use controls, variables
are refreshed every single time the processor reaches the relative trigger.

Enabling controls

When you set a trigger, all the elements in the Control window look disabled.

As a matter of fact, you cannot access any of the controls, except the Accumulator display, until at least
one variable is dragged into the Debug window. When this happens triggering automatically starts and the
Controls window changes as follows.

 D1WWTE04E122

PHC Studio

Triggering can be started/stopped with the apposite button.

Fixing the number of refresh

If you want the values to be refreshed the first time the window is triggered, select None, and press the single
step button, otherwise set the counter to 1 and select For.

If you want the values to be refreshed the first X times the window is triggered, set the counter to X and select
For.

If you want the values to be refreshed after Y times the window is triggered, set the counter to Y and select
After.

Triggers and conditions settings become the actual settings when the triggering is (re)started.

Watching the accumulator
As stated in the Refresh of values section (see Paragraph 9.5.1.5), when you insert a trigger on
an instruction line, you establish that the variables in the relative debugging window will be up-
dated every time the processor reaches that location, before the instruction itself is executed.
In some cases, for example when a trigger is placed before a ST statement, it can be useful to know the value
of the accumulator. This allows you to forecast the outcome of the instruction that will be executed after all the
variables in the trigger window have been updated. To add the accumulator to the trigger window, click on the
Accumulator display button.

Defining a condition
This control enables users to set a condition on the occurrences of a trigger. By default, this condition is set to
TRUE, and the values in the debug window are refreshed every time the window manager is triggered.

If you want to put a restriction on the refreshment mechanism, you can specify a condition by clicking on the
apposite button.

When you do so, a text window pops up, where you can write the IL code that sets the condition.

Once you have finished writing the condition code, click the OK button to install it, or press the Esc button to
cancel. If you choose to install it, the values in the debug window are refreshed every time the window manager
is triggered and the user-defined condition is true.

 D1WWTE04E 123

PHC Studio

A simplified expression of the condition now appears in the control.

To modify it, press again the above mentioned button.

The text window appears, containing the text you originally wrote, which you can now edit.

To completely remove a user-defined condition, delete the whole IL code in the text window, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE or FALSE), other-
wise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code. Namely, all variables local to
the module where the trigger was originally inserted are out of scope, if they have not been dragged into the
debug window. No new variables can be declared in the condition window.

9.5.2.12 CLOSING A TRIGGER WINDOW AND REMOVING A TRIGGER

This web page deals with what you can do when you finish a debug session with a trigger window. You can
choose between the following options.

 - Closing the trigger window.

 - Removing the trigger.

 - Removing all the triggers.

Notice that the actions listed above produce very different results.

Closing the trigger window

If you have finished watching a set of variables by means of a trigger window, you may want to close the Debug
window, without removing the trigger. If you click the button in the top right-hand corner, you just hide the
interface window, while the window manager and the relative trigger keep working.

As a matter of fact, if later you want to resume debugging with a trigger window that you previously hid, you
just need to open the Trigger list window, to select the record referred to that trigger window, and to
click the Open button.

The interface window appears with value of variables and trigger counter updated, as if it had not been closed.

Removing a trigger
If you choose this option, you completely remove the code both of the window manager and of its trigger. To this
purpose, just open the Trigger list window, select the record referred to the trigger window you want to
eliminate, and click the Remove button.

 D1WWTE04E124

PHC Studio

Alternatively, you can move the cursor to the line (if the module is in IL or ST), or click the block (if the module
is in FBD or LD) where you placed the trigger. Now press the Set/Remove trigger button in the Debug
toolbar.

Removing all the triggers
Alternatively, you can remove all the existing triggers at once, regardless for which records are selected, by
clicking on the Remove all button.

9.6 GRAPHIC TRIGGERS

9.6.1 GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them sampled synchronously
and to have their curve displayed in a special pop-up window.

Sampling of the dragged-in variables occurs every time the processor reaches the position (i.e. the instruction
- if IL, ST - or the block - if FBD, LD) where you placed the trigger.

9.6.1.1 PRE-CONDITIONS TO OPEN A GRAPHIC TRIGGER WINDOW

No need for special compilation
All the PHC Studio debugging tools operate at run-time. Thus, unlike other programming languages such as
C++, the compiler does not need to be told whether or not to support trigger windows: given a PLC code, the
compiler’s output is unique, and there is no distinction between debug and release version.

Memory availability
A graphic trigger window takes all the free memory space in the application code sector. Obviously, in order to
start up a trigger window, it is necessary that a sufficient amount of memory is available, otherwise an error
message appears.

 D1WWTE04E 125

PHC Studio

9.6.1.2 GRAPHIC TRIGGER WINDOW INTERFACE

Setting a graphic trigger causes a pop-up window to appear, which is called Interface window. This is the
main interface for accessing the debugging functions that the graphic trigger window makes available. It con-
sists of several elements, as shown below.

3

1

2

4

1. Caption bar 2. Controls bar 3. Chart area 4. Variables window

The caption bar

The Caption bar at the top of the pop-up window shows information on the location of the trigger which
causes the variables listed in the Variables window to be sampled.

The text in the caption has the following format:

ModuleName#Location

Where

ModuleName Name of program, function, or function block where the trigger was placed.

Location

Exact location of the trigger, within module ModuleName.

If ModuleName is in IL, ST, Location has the format:

N1

Otherwise, if ModuleName is in FBD, LD, it becomes:

N2$BT:BID

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, etc.)

BID = block identifier

 D1WWTE04E126

PHC Studio

The Controls bar
This dialog box allows you to better control the working of the graphic trigger window. A detailed description
of the function of each control is given in the Graphic trigger window controls section (see Paragraph
9.6.1.5).

The Chart area

The Chart area includes six items:

1) Plot: area containing the actual plot of the curve of the dragged-in variables.

2) Samples to acquire: number of samples to be collected by the graphic trigger window manager.

3) Horizontal cursor: cursor identifying a horizontal line. The value of each variable at the intersection with
this line is reported in the column horz cursor.

4) Blue cursor: cursor identifying a vertical line. The value of each variable at the intersection with this line is
reported in the column left cursor.

5) Red cursor: same as blue cursor.

6) Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot area, the scroll bar
allows you to slide back and forth along the horizontal axis.

The Variables window

This lower section of the Debug window is a table consisting of a row for each variable that you have dragged
in. Every row has several fields, which are described in detail in the Drag and drop information section.

9.6.1.3 GRAPHIC TRIGGER WINDOW: DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

1. Variables window

This lower section of the Debug window is a table consisting of a row for each variable that
you dragged in. Each row has several fields, as shown in the picture below.

1

 D1WWTE04E 127

PHC Studio

Field Description

Track Name of the variable.

Um Unit of measurement.

Min value Minimum value in the record set.

Max value Maximum value in the record set.

Cur value Current value of the variable.

v/div How many engineering units are represented by a unit of the y-axis
(i.e. the space between two ticks on the vertical axis).

Blue cursor Value of the variable at the intersection with the line identified by the
blue cursor.

Red cursor Value of the variable at the intersection with the line identified by the
red cursor.

Horz cursor Value of the variable at the intersection with the line identified by the
horizontal cursor.

Note that you can drag into the graphic trigger window only variables local to the module where you placed the
relative trigger, or global variables, or parameters. You cannot drag variables declared in another program, or
function, or function block.

9.6.1.4 SAMPLING OF VARIABLES

Let us consider the following example.

The value of the variables is sampled every time the window manager is triggered, that is every time the pro-
cessor executes the instruction marked by the green arrowhead. However, you can set controls in order to have
variables sampled when triggers also satisfy further limiting conditions that you define.

The value of the variables in the column Track is read from memory just before the marked instruction and
immediately after the previous instruction.

9.6.1.5 GRAPHIC TRIGGER WINDOW CONTROLS

This paragraph deals with controls of the Graphic trigger window. Controls allow you to specify in detail
when PHC Studio is supposed to sample the variables added to the Variables window.

Graphic trigger window controls act in a well-defined way on the behavior of the window, regardless for the type
of the module (IL, ST, FBD or LD) where the related trigger has been inserted.

Window controls are made accessible to users through the Controls bar of the debug window.

 D1WWTE04E128

PHC Studio

Button Command Description

Start graphic
trace

When you push this button down, you let acquisition start.
Now, if acquisition is running and you release this button, you
stop the sample collection process, and you reset all the data
you have acquired so far.

Enable/Disable
cursors

The two cursors (red cursor, blue cursor) may be seen and
moved along their axis as long as this button is pressed.
Release this button if you want to hide simultaneously all the
cursors.

Show samples This control is used to put in evidence the exact point in which
the variables are triggered at each sample.

Split variables
When pressed, this control splits the y-axis into as many
segments as the dragged-in variables, so that the diagram of
each variable is drawn in a separate band.

Show all values It is used to fill in the graph window all the values sampled for
the selected variables in the current record setrecord set.

Horizontal Zoom In
and Zoom Out

Zooming in is an operation that makes the curves in the
Chart area appear larger on the screen, so that greater
detail may be viewed. Zooming out is an operation that makes
the curves appear smaller on the screen, so that it may
be viewed in its entirety. Horizontal zoom acts only on the
horizontal axis.

Horizontal show
all

This control is used to horizontally center record set samples.
So first sample will be placed on the left margin, and last will
be placed on the right margin of the graphic window.

Vertical Zoom In
and Zoom Out Vertical Zoom acts only on the vertical axis.

Vertical show all
This control is used to vertically center record set samples. So
max value sample will be placed near top margin and low value
sample will be placed on the bottom margin of the graphic
window.

Graphic trigger
window properties

Pushing this button causes a tabs dialog box to appear, which
allows you to set general user options affecting the action of
the graphic trigger window. Since the options you can set are
quite numerous, they are dealt with in a section apart. Click
here to access this section.

Print chart Push this button to print both the Chart area and the
Variables window.

Save chart Press this button to save the chart.

Trigger counter

This read-only control displays two numbers with the following format: X/Y.

X indicates how many times the debug window manager has been triggered, since the graphic trigger was in-
stalled.

Y represents the number of samples the graphic window has to collect before stopping data acquisition and
drawing the curves.

 D1WWTE04E 129

PHC Studio

Trigger state

This read-only control shows you the state of the Debug window. It can assume the following values.

No sample(s) taken, as the trigger has not occurred during the current task
execution.

Sample(s) collected, as the trigger has occurred during the current task
execution.

The trigger counter indicates that a number of samples has been collected
satisfying the user request or memory constraints, thus the acquisition
process is stopped.

Communication with target interrupted, the state of the trigger window cannot
be determined.

9.6.1.6 GRAPHIC TRIGGER WINDOW OPTIONS

In order to open the options tab, you must click the Properties button in the Controls bar. When you do
this, the following dialog box appears.

General

Control

Control Description

Show grid Tick this control to display a grid in the Chart area background.

Show time
bar

The scroll bar at the bottom of the Chart area is available as long
as this box is checked.

Show tracks
list

The Variables window is shown as long as this box is checked,
otherwise the Chart area extends to the bottom of the graphic
trigger window.

 D1WWTE04E130

PHC Studio

Values

Control Description

Horizontal
scale Number of samples per unit of the x-axis. By unit of the x-axis the

space is meant between two vertical lines of the background grid.

Buffer size

Number of samples to acquire. When you open the option tab, after
having dragged-in all the variables you want to watch, you can read
a default number in this field, representing the maximum number of
samples you can collect for each variable. You can therefore type a
number which is less or equal to the default one.

Tracks
This tab allows you to define some graphic properties of the plot of each variable. To select a variable, click its
name in the Track list column.

Control Description

Unit Unit of measurement, printed in the table of the Variables window.

Value/div Δ value per unit of the y-axis. By unit of the y-axis is meant the space
between two horizontal lines of the background grid.

Hide Check this flag to hide selected track on the graph.

Push Apply to make your changes effective, or push OK to apply your changes and to close the options tab.

User-defined condition
If you define a condition by using this control, the sampling process does not start until that condition is satis-
fied. Note that, unlike trigger windows, once data acquisition begins, samples are taken every time the window
manager is triggered, regardless of the user condition being still true or not.

After you enter a condition, the control displays its simplified expression.

9.6.2 DEBUGGING WITH THE GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them sampled synchronously
and their curve displayed in a special pop-up window.

9.6.2.1 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

Let us also assume that you want to know the value of b, d, and k, just before the ST k instruction is executed.
To do so, move the cursor to line 12.

 D1WWTE04E 131

PHC Studio

Then click Debug>Add/Remuve grafic trigger .

A green arrowhead appears next to the line number, and the graphic trigger window pops up.

Not all the IL instructions support triggers. For example, it is not possible to place a trigger at the beginning of
a line containing a JMP statement.

9.6.2.2 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

In order to get the diagram of a variable plotted, you need to add it to the graphic trigger window. To this pur-
pose, select a variable, by double clicking it, and then drag it into the Variables window. The variable now
appears in the Track column.

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically
shown and allows the user to setup sampling and visualization properties.

 D1WWTE04E132

PHC Studio

9.6.2.3 OPENING THE GRAPHIC TRIGGER WINDOW FORM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

Let us also assume that you want to know the values of c, d, and k, just before the ST k instruction is executed.

Provided that you can never place a trigger in a block representing a variable such as

you must select the first available block preceding the selected variable. In the example of the above figure, you
must move the cursor to network 3, and click the ADD block.

Now click Debug>Add/Remuve grafic trigger .

This causes the colour of the selected block to turn to green, a white circle with the trigger ID number inside to
appear in the middle of the block, and the related trigger window to pop up.

 D1WWTE04E 133

PHC Studio

When preprocessing the FBD source code, compiler translates it into IL instructions. The ADD instruction in
network 3 is expanded to:

LD k

ADD 1

ST k
When you add a trigger to an FBD block, you actually place the trigger before the first statement of its IL equiva-
lent code.

9.6.2.4 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the diagram of a variable, you need to add it to the trigger window. Let us assume that you
want to see the plot of the variable k of the FBD code in the figure below.

To this purpose, click Edit>Watch mode .

The cursor will become as follows.

Now you can click the block representing the variable you wish to be shown in the graphic trigger window.

In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

In order to plot the curve of variable k, select Graphic Trace in the Debug windows column, then press
OK. The name of the variable is now printed in the Track column.

 D1WWTE04E134

PHC Studio

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
 Edit>Insert/Move mode , in order to restore the original cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically
shown and allows the user to setup sampling and visualization properties.

9.6.2.5 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

In this case, the same rules apply as to insert the graphic trigger in an FBD module on a contact

or coil

In this case, follow the instructions. Let us also assume that you want to know the value of some variables every
time the processor reaches network number 1.

 D1WWTE04E 135

PHC Studio

Click one of the items making up network nr. 1, then click Debug>Add/Remuve grafic trigger
This causes the grey raised button containing the network number to turn to green, a white circle with a number
inside to appear in the middle of the button, and the graphic trigger window to pop up.

Note that unlike the other languages supported by PHC Studio, LD does not allow you to insert a trigger before a
single contact or coil, as it lets you select only an entire network. Thus the variables in the Graphic trigger
window will be sampled every time the processor reaches the beginning of the selected network.

9.6.2.6 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

In order to watch the diagram of a variable, you need to add it to the Graphic trigger window. Let us as-
sume that you want to see the plot of the variable b in the LD code represented in the figure below.

To this purpose, click Edit>Watch mode .

The cursor will become as follows.

Now you can click the item representing the variable you wish to be shown in the Graphic trigger win-
dow.

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

In order to plot the curve of variable b, select Graphic trace in the Debug windows column, then press
OK. The name of the variable is now printed in the Track column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
 Edit>Insert/Move mode , so as to restore the original shape of the cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically
shown and allows the user to setup sampling and visualization properties.

 D1WWTE04E136

PHC Studio

9.6.2.7 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the instruction

f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then click Debug>Add/Remuve grafic trigger .

A green arrowhead appears next to the line number, and the Graphic trigger window pops up.

Not all the ST instructions support triggers. For example, it is not possible to place a trigger on a line containing
a terminator such as END_IF, END_FOR, END_WHILE, etc.

9.6.2.8 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE

In order to get the diagram of a variable plotted, you need to add it to the Graphic trigger window. To
this purpose, select a variable, by double clicking it, and then drag it into the Variables window, that is the
lower white box in the pop-up window. The variable now appears in the Track column.

 D1WWTE04E 137

PHC Studio

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically
shown and allows the user to setup sampling and visualization properties.

9.6.2.9 REMOVING A VARIABLE FROM THE GRAPHIC TRIGGER WINDOW

If you want to remove a variable from the Graphic trigger window, select it by clicking its name once, then press
the Del key.

9.6.2.10 USING CONTROLS

This paragraph deals with graphic trigger window controls, which allow you to better supervise the working of
this debugging tool, so as to get more information on the code under scope.

Enabling controls

When you set a trigger, all the elements in the Control bar are enabled. You can start data acquisition by
clicking the Start graphic trace acquisition button.

If you defined a user condition, which is currently false, data acquisition does not start, even though you press
the apposite button.

On the contrary, once the condition becomes true, data acquisition starts and continues until the Start
graphic trace acquisition button is released, regardless for the condition being or not still true.

if you release the Start graphic trace acquisition button before all the required samples have
been acquired, the acquisition process stops and all the collected data get lost.

Defining a condition
This control enables users to set a condition on when to start acquisition. By default, this condition is set to true,
and acquisition begins as soon as you press the Enable/Disable acquisition button. From that mo-
ment on, the value of the variables in the Debug window is sampled every time the trigger occurs.

In order to specify a condition, open the Condition tab of the Options dialog box, then press the relevant
button.

A text window pops up, where you can write the IL code that sets the condition.

 D1WWTE04E138

PHC Studio

Once you have finished writing the condition code, click the OK button to install it, or press the Esc button to
cancel. The collection of samples will not start until the Start graphic trace acquisition button
is pressed and the user-defined condition is true. A simplified expression of the condition now appears in the
control.

To modify it, press again the relevant button.

The text window appears, containing the text you originally wrote, which you can now edit.

To completely remove a user-defined condition, press again on the above mentioned button, delete the whole
IL code in the text window, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE or FALSE), other-
wise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code. Namely, all variables local to
the module where the trigger was originally inserted are out of scope, if they have not been dragged into the
Debug window. Also, no new variables can be declared in the condition window.

Setting the scale of axes
 - x-axis

When acquisition is completed, PHC Studio plots the curve of the dragged-in variables adjusting the x-axis so
that all the data fit in the Chart window. If you want to apply a different scale, open the General tab of
the Graph properties dialog box, type a number in the horizontal scale edit box, then confirm by clicking
Apply.

 - y-axis

You can change the scale of the plot of each variable through the Tracks list tab of the Graph prop-
erties dialog box. Otherwise, if you do not need to specify exactly a scale, you can use the Zoom In and
Zoom Out controls.

9.6.2.11 CLOSING THE GRAPHIC TRIGGER WINDOW AND REMOVING THE TRIGGER

At the end of a debug session with the graphic trigger window you can choose between the following options:

 - Closing the Graphic trigger window.

 - Removing the trigger.

 - Removing all the triggers.

 D1WWTE04E 139

PHC Studio

Closing the graphic trigger window

If you have finished plotting the diagram of a set of variables by means of the Graphic trigger window,
you may want to close the Debug window without removing the trigger. If you click the button in the top right-
hand corner, you just hide the Interface window, while the window manager and the relative trigger keep
working.

As a matter of fact, if later you want to restore the Graphic trigger window that you previously hid:

 - open the Trigger list window;

 - select the record (having type G);

 - click the Open button.

The Interface window appears with the trigger counter properly updated, as if it had never been closed.

Removing the trigger
If you choose this option, you completely remove the code both of the window manager and of its trigger. To
this purpose:

 - open the Trigger list window;

 - select the record (having type G);

 - click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL), or click the block (if the module is in
FBD) where you placed the trigger. Now press the Graphic trace button in the Debug toolbar.

Removing all the triggers
Alternatively, you can remove all the existing triggers at once, regardless for which records are selected, by
clicking on the Remove all triggers button.

 D1WWTE04E140

PHC Studio

10. PHC STUDIO REFERENCE

10.1 MENUS REFERENCE

In the following tables you can see the list of all PHC Studio’s commands. However, since PHC Studio has a
multi-document interface (MDI), you may find some disabled commands or even some unavailable menus, de-
pending on what kind of document is currently active.

10.1.1 FILE MENU

Command Icon Key Description

New project Creates a new PHC Studio project.

Open project Opens an existing PHC Studio project.

Import project
from target Imports sources project from target device.

View project
(read only) Opens an existing PHC Studio project in read-only mode.

Save project Saves the current open project.

Save project As Saves the current open project specifying new name, location and
extension.

Close project Closes the open project.

New text file Opens a blank new generic text file.

Open file Ctrl+O
Opens an existing file, whatever its extension. The file is displayed
in the text editor. Anyway, if you open a project file, you actually
open the PHC Studio project it refers to.

Save Ctrl+S Saves the document of the currently active window.

Close Closes the document of the currently active window.

Options Opens the PHC Studio options dialog box.

Print Ctrl+P Prints the document of the currently active window.

Print preview Creates a preview of the document of the currently active window,
ready to be printed.

Print project Prints all the documents making up the project.

Printer setup Opens the Printer setup dialog box.

..recent.. Lists a set of project file recently opened.

Exit Closes PHC Studio.

 D1WWTE04E 141

PHC Studio

10.1.2 EDIT MENU

Command Icon Key Description

Undo Ctrl+Z Cancels last action made in the document.

Redo Ctrl+Y Restores the last action cancelled by Undo.

Cut Ctrl+X Removes the selected items from the active document and
stores them in a system buffer.

Copy Ctrl+C Copies the selected items to a system buffer.

Paste Ctrl+V Pastes in the active document the contents of the system buf-
fer.

Delete Del Deletes the selected item.

Delete line Ctrl+E Deletes the whole source code line.

Find in project Ctrl+
Shift+F Opens the Find in project dialog box.

Bookmarks...

Add/Toggle Ctrl+F2 Adds a bookmark to mark lines. If a bookmark is already
defined, removes it.

Next F2 Goes to next defined bookmark

Prev Shift+F2 Goes to previous defined bookmark

Remove all Removes all defined bookmarks

Go to line Ctrl+G Allows you to quickly move to a specific line in the source
code editor.

Find Ctrl+F
Asks you to type a string and searches for its first instance
within the active document from the current location of the
cursor.

Find next F3
Iterates between the results of the research, found by the
Find command.

Replace Ctrl+H Allows you to automatically replace one or all the instances of
a string with another string.

Insert/Move mode Toggle between those two editing modes, used to insert or
move blocks.

Connection mode Editing mode which allows you to draw logical wires to con-
nect pins.

Watch mode Editing mode which allows you to add variables to any debug-
ging tool.

 D1WWTE04E142

PHC Studio

10.1.3 VIEW MENU

Command Icon Key Description

Toolbar

Main Toolbar Shows or hides the Main toolbar.

Status bar Shows or hides the Status bar.

Debug bar Ctrl+B Shows or hides the Debug toolbar.

FBD bar Ctrl+D Shows or hides the FBD toolbar.

LD bar Ctrl+A Shows or hides the LD toolbar.

SFC bar Ctrl+Q Shows or hides the SFC toolbar.

Project bar Ctrl+J Shows or hides the Project toolbar.

Network Ctrl+N Shows or hides the Network toolbar.

Document bar Ctrl+M Shows or hides the Document bar.

Tool windows

Workspace Ctrl+W Shows or hides the Workspace window (also called Project
window).

Library Ctrl+L Shows or hides the Libraries window.

Output Ctrl+R Shows or hides the Output window.

Oscilloscope Ctrl+K Shows or hides the Oscilloscope window.

Watch window Ctrl+T Shows or hides the Watch window.

Force I/O bar Shows or hides the Force I/O bar.

PLC run-time
status Shows or hides the PLC run-time window.

Cross Reference
window

Not implemented yet.

Full screen Ctrl+U Expands the currently active document window to fill entire screen. (Esc
to exit from this mode).

Grid Shows or hides a dotted grid in the background of graphical source code
editors.

Show comments for
objects

Shows or hides comments for individual objects, not only for networks.
(Only for LD editor).

 D1WWTE04E 143

PHC Studio

10.1.4 PROJECT MENU

Command Icon Key Description

New object

New program Creates a new program. A dialog is prompted in order to specify
the new program properties.

New function
block

Creates a new function block. A dialog is prompted in order to
specify the new function block properties.

New function Creates a new function block. A dialog is prompted in order to
specify the new function properties.

New variable

Automatic Creates a new automatic variable. A dialog is prompted in order to
specify the new variable properties.

Mapped
variable

Creates a new mapped variable. A dialog is prompted in order to
specify the new variable properties.

Constant Creates a new constant. A dialog is prompted in order to specify
the new constant properties.

Retain Creates a new retain variable. A dialog is prompted in order to
specify the new variable properties.

Copy object Copies the object currently selected in the Workspace.

Paste object Pastes the previously copied object.

Duplicate object Duplicates the object currently selected in the Workspace, and
asks you to type the name of the copy.

Delete object Deletes the currently selected object.

View PLC object
properties Alt+Enter Shows properties and description of the currently selected object.

Object browser Opens the Object browser, which lets you navigate between
objects.

Compile F7 Launches the PHC Studio compiler.

Recompile all Ctrl+
Alt+F7

Recompiles the project.

Generate
redistributable
source module

Generates an RSM file.

Import object from
library

Lets you import a PHC Studio object from a library.

Export object to
library

Lets you export a PHC Studio object to a library.

Library manager Opens the Library manager.

Refresh all li-
braries

Reloads all libraries linked to the project.

Macros

New macro Creates a new macro. A dialog is prompted in order to specify the
new macro properties.

 D1WWTE04E144

PHC Studio

Command Icon Key Description

Copy macro Copies the selected macro creating a new one.

Delete macro Deletes the selected macro.

Properties Shows the selected macro properties.

Select target... Lets you to select a new target for the project.

Refresh current
target

Lets you update the target file for the same version of the target.

Options... Opens the project options dialog.

10.1.5 ONLINE MENU

Command Icon Key Description

Set up communica-
tion...

Lets you set the properties of the connection to the target.

Connect PHC Studio tries to establish a connection to the target.

Download code F5
PHC Studio checks if any changes have been applied since last
compilation, if so compiles the project and then downloads the source
code to the target.

Download options Lets you set the properties of the source code downloaded to the
target.

Force image upload If the target device is connected, lets you upload the img file.

Force debug symbols
upload

If the target device is connected, lets you upload the debug symbols
file.

Halt Stops the PLC execution.

Cold restart Restarts the PLC execution and both retain and non-retain variables will
be reset.

Warm restart Restarts the PLC execution and non-retain variables will be reset.

Hot restart Restarts the PLC execution without any reset on variables.

Reboot target Reboots the target.

Read all logs again Reloads all remote logs from target.

 D1WWTE04E 145

PHC Studio

10.1.6 DEBUG MENU

Command Icon Key Description

Simulation mode Open/close the integrated simulation environment.

Start/Stop watch
value

Starts or stops (toggle) the evaluation of the symbols added in
the watch window.

Add symbol to watch F8 Adds a symbol to the Watch window.

Insert new item
into watch Shift+F8 Inserts a new item into the Watch window.

Add symbol to a de-
bug window F10 Adds a symbol to a debug window.

Insert new item
into a debug window Shift+F10 Inserts a new item into a debug window.

Live debug mode If debug mode is running, starts or stops (toggle) the live debug
mode.

Add/remove text
trigger F9 Adds/removes a text trigger.

Add/remove
graphic trigger Shift+F9 Adds/removes a graphic trigger.

Remove all
triggers

Ctrl+
Shift+F9

Removes all the active triggers.

Trigger list Ctrl+I Lists all the active triggers.

Run Restarts program after a breakpoint is hit.

Add/Remove
breakpoint F12 Adds or removes a breakpoint.

Remove all
breakpoints

Removes all the active breakpoints.

Breakpoint list Lists all the active breakpoints.

Change current in-
stance

Changes the current function block instance (live

debug mode).

 D1WWTE04E146

PHC Studio

10.1.7 SCHEME FBD MENU

Command Icon Key Description

Network

New

Top Adds a blank network at the top of the active document.

Bottom Adds a blank network at the bottom of the active document.

Before Adds a blank network before the selected network in the active
document.

After Adds a blank network after the selected network in the active document.

Label Assigns a label to the selected network, so that it can be indicated as
the target of a jump instruction.

Object

New

Function Opens the object browser in order to choose a function to be added to
the current active document.

Function
block shift+B Opens the object browser in order to choose a function block to be

added to the current active document.

Variable shift+V Opens the object browser in order to choose a variable to be added to
the current active document.

Constant shift+K Opens the object browser in order to choose a constant to be added to
the current active document.

Return shift+R Adds a return statement into the selected network.

Jump to
label shift+J Adds a jump statement into the selected network.

Operator Opens the object browser in order to choose an operator to be added to
the current active document.

Comment shift+M Adds a comment into the selected network.

Instance name Opens the object browser in order to choose an operator to be added to
the current active document.

Open source

Opens the editor by which the selected object was created, and displays
the relevant source code:

 - if the object is a program, or a function, or a function block,
this command opens its source code;

 - if the object is a variable or a parameter, this command opens
the corresponding variable editor;

 - if the object is a standard function or an operator, this
command has no functionality.

Auto connect Toggle auto-connection mode, in order to connect automatically two
blocks when they are close enough.

Delete invalid
connection Ctrl+M Removes all invalid connections, represented by a red line in the active

scheme.

 D1WWTE04E 147

PHC Studio

Command Icon Key Description

Increment pins Ctrl+’+’ Adds additional pins to the selected block in order to increase standard
ones.

Decrement pins Ctrl+’-’ Removes pins added by the Increment pins command.

Enable EN/ENO
pins

Adds the enable in/enable out pins to the selected block. The code
implementing the selected block will be executed only when the enable
in signal is true. The enable out signal simply repeats the value of
enable in, allowing you either to enable or to disable a set of blocks
in cascade.

Object proper-
ties

Shows some properties of the selected block.

 D1WWTE04E148

PHC Studio

10.1.8 SCHEME LD MENU

Command Icon Key Description

Network

New

Top Adds a blank network at the top of the active document.

Bottom Adds a blank network at the bottom of the active document.

Before Adds a blank network before the selected network in the
active document.

After Adds a blank network after the selected network in the active
document.

Label Assigns a label to the selected network in order to be used as
target of a jump instruction.

Object

New

Parallel contact
before Shift+P Adds a contact parallel before the selected one into the

selected network.

Parallel contact
after

Adds a contact parallel after the selected one into the selected
network.

Serie contact
before

Adds a contact in series before the selected one into the
selected network.

Serie contact after Shift+C Adds a contact in series after the selected one into the
selected network.

Coil Shift+O Adds a Coil into the selected network.

Block Shift+B Opens the object browser in order to choose which block
should be added to the current active document.

Constant Shift+K Opens the object browser in order to choose a constant to be
added to the current active document.

Return Shift+R Adds a Return statement into the selected network.

Jump Shift+J Adds a jump statement into the selected network.

Variable Shift+V Opens the object browser in order to choose a variable to be
added to the current active document.

Expression Shift+E Adds an expression into the selected network.

New branch Creates new branch after the current position.

Comment Shift+M Adds a comment into the selected network.

Instance name Lets you assign a name to an instance of the selected function
block.

 D1WWTE04E 149

PHC Studio

Command Icon Key Description

Open source

Opens the editor by which the selected object was created,
and displays the relevant source code:

 - if the object is a program, or a function, or a function
block, this command opens its source code;

 - if the object is a variable or a parameter, this
command opens the corresponding variable editor;

 - if the object is a standard function or an operator,
this command has no functionality.

Open object O Changes the selected object into an open contact object.

Negated object C Changes the selected object into a negated contact object.

Positive object P Changes the selected object into a positive contact object.

Negative object N Changes the selected object into a negative contact object.

Set coil S Changes the selected coil into a set coil.

Reset coil R Changes the selected coil into a reset coil.

Increment pins Ctrl+’+’ Adds additional pins to the selected block in order to increase
standard ones.

Decrement pins Ctrl+’-’ Removes pins added by the Increment pins command.

Enable EN/ENO pins E

Adds the enable in/enable out pins to the selected block.
The code implementing the selected block will be executed
only when the enable in signal is true. The enable out
signal simply repeats the value of enable in, allowing you
either to enable or to disable a set of blocks in cascade.

Set output line Set selected pin as the output line of the block.

Object properties Shows some properties of the selected block.

 D1WWTE04E150

PHC Studio

10.1.9 SCHEME SFC MENU

Command Icon Key Description

Object

New

Step Adds new step into the selected network.

Transition Adds new transition into the selected network.

Jump Adds new jump into the selected network.

Modify

Add pin to divergent
transition

Adds a divergent pin to the selected transition.

Remove pin from divergent
transition

Removes a divergent pin to the selected transition.

Add pin to convergent
transition

Adds a convergent pin to the selected transition.

Remove pin from convergent
transition

Removes a convergent pin to the selected transition.

Add pin to simultaneous
divergent transition

Adds a simultaneous divergent pin to the selected
transition.

Remove pin from
simultaneous divergent
transition

Removes a simultaneous divergent pin to the selected
transition.

Add pin to simultaneous
convergent transition

Adds a simultaneous convergent pin to the selected
transition.

Remove pin from
simultaneous convergent
transition

Removes a simultaneous convergent pin to the
selected transition.

Add space before rightmost
pin

Adds a space before the rightmost pin.

Remove space before
rightmost pin

Removes a space before the rightmost pin.

Code Object

New Action Adds an action in the active document.

New Transition code Adds a transition in the active document.

Auto connect Toggle auto-connection mode, in order to connect
automatically two blocks when they are close enough.

Delete invalid connection Ctrl+M Removes all invalid connections, represented by a red
line in the active scheme.

 D1WWTE04E 151

PHC Studio

10.1.10 VARIABLES MENU

Command Icon Key Description

Add

Automatic Creates a new automatic variable. A dialog is prompted in order to
specify the new variable.

Mapped variable Ctrl+
Shift+M

Creates a new mapped variable. A dialog is prompted in order to
specify the new variable.

Constant Creates a new constant. A dialog is prompted in order to specify the
new constant.

Retain Creates a new retain variable. A dialog is prompted in order to
specify the new variable.

Insert Ctrl+
Shift+ins

Adds a new row to the grid in the currently active editor.

Delete Del Deletes the variable in the selected row of the currently active table.

Create multiple Lets you to create a set of multiple variables.

Group Opens a dialog box which lets you create and delete groups of
variables.

10.1.11 WINDOW MENU

Command Icon Key Description

Cascade Displaces all open documents in cascade, so that they completely
overlap except for the caption.

Tile
The PLC editors area is split into frames having the same dimensions,
depending on the number of currently open documents. Each frame is
automatically assigned to one of such documents.

Arrange Icons Displaces the icons of the minimized documents in the bottom left-
hand corner of the PLC editors area.

Close all Closes all open documents.

10.1.12 HELP MENU

Command Icon Key Description

Index Lists all the Help keywords and opens the related topic.

Context F1 Context-sensitive help. Opens the topic related to the currently active
window.

About... Credits and version information.

 D1WWTE04E152

PHC Studio

10.2 TOOLBARS REFERENCE

In the following tables you can see the list of all PHC Studio’s toolbars. The buttons making up each toolbar are
always the same, whatever the currently active document. However, some of them may produce no effect, if
there is no logical relation to the active document.

10.2.1 MAIN TOOLBAR

10.2.2 FBD TOOLBAR

10.2.3 LD TOOLBAR

10.2.4 SFC TOOLBAR

10.2.5 PROJECT TOOLBAR

10.2.6 NETWORK TOOLBAR

10.2.7 DEBUG TOOLBAR

 D1WWTE04E 153

PHC Studio

 D1WWTE04E154

PHC Studio

11. LANGUAGE REFERENCE

All PHC Studio languages are IEC 61131-3 standard-compliant.

 - Common elements

 - Instruction list (IL)

 - Function block diagram (FBD)

 - Ladder diagram (LD)

 - Structured text (ST)

 - Sequential Function Chart (SFC).

Moreover, PHC Studio implements some extensions:

 - Pointers

 - Macros.

11.1 COMMON ELEMENTS

By common elements textual and graphic elements are means which are common to all the programmable con-
troller programming languages specified by IEC 61131-3 standard.
Note: the definition and editing of most of the common elements (variables, structured ele-

ments, function blocks definitions etc.) are managed by PHC Studio through specific edi-
tors, forms and tables.
PHC Studio does not allow to edit directly the source code related to the above mentioned
common elements.
The following paragraphs are meant to be a language specification. To correctly manage
common elements refer to the PHC Studio user guide.

11.1.1 BASIC ELEMENTS

11.1.1.1 CHARACTER SET

Textual documents and textual elements of graphic languages are written by using the standard ASCII character
set.

11.1.1.2 COMMENTS

User comments are delimited at the beginning and end by the special character combinations “(*” and “*)”,
respectively. Comments are permitted anywhere in the program, and they have no syntactic or semantic signifi-
cance in any of the languages defined in this standard.

The use of nested comments, e.g., (* (* NESTED *) *), is treated as an error.

11.1.2 ELEMENTARY DATA TYPES

A number of elementary (i.e. pre-defined) data types is made available by PHC Studio, all compliant with IEC
61131-3 standard.

Elementary data types, keyword for each data type, number of bits per data element, and range of values for
each elementary data type are described in the following table.

Keyword Data type Bits Range

BOOL Boolean See note 0 to 1

SINT Short integer 8 -128 to 127

USINT Unsigned short integer 8 0 to 255

INT Integer 16 -32768 to 32767

 D1WWTE04E 155

PHC Studio

Keyword Data type Bits Range

UINT Unsigned integer 16 0 to 65536

DINT Double integer 32 -231 to 231-1

UDINT Unsigned long integer 32 0 to 232

BYTE Bit string of length 8 8 —

WORD Bit string of length 16 16 —

DWORD Bit string of length 32 32 —

REAL Real number 32 -3.40E+38 to +3.40E+38

STRING String of characters - -

Note: the actual implementation of the BOOL data type depends on the processor of the target
device, e.g. it is 1 bit long for devices that have a bit-addressable area.

11.1.3 DERIVED DATA TYPES

Derived data types can be declared using the TYPE...END_TYPE construct. They can be used in variable declara-
tions, in addition to the elementary data types.

Both single-element variables and elements of a multi-element variable, which are declared to be of derived
data types, can be used anywhere where a variable of its parent type can be used.

11.1.3.1 TYPEDEFS

The purpose of typedefs is to assign alternative names to existing types. There are not any differences between
a typedef and its parent type, except the name.

Typedefs can be declared using the following syntax:

 TYPE

 <enumerated data type name> : <parent type name>;

 END_TYPE
For example, consider the following declaration, mapping the name LONGWORD to the IEC 61131-3 standard type
DWORD:

 TYPE

 longword : DWORD;

 END_TYPE

11.1.3.2 ENUMERATED DATA TYPES

An enumerated data type declaration specifies that the value of any data element of that type can only be one of
the values given in the associated list of identifiers. The enumeration list defines an ordered set of enumerated
values, starting with the first identifier of the list, and ending with the last.

Enumerated data types can be declared using the following syntax:

 TYPE

 <enumerated data type name> : (<enumeration list>);

 END_TYPE
For example, consider the following declaration of two enumerated data types. Note that, when no explicit value
is given to an identifier in the enumeration list, its value equals the value assigned to the previous identifier
augmented by one.

 D1WWTE04E156

PHC Studio

 TYPE

 enum1: (

 val1, (* the value of val1 is 0 *)

 val2, (* the value of val2 is 1 *)

 val3 (* the value of val3 is 2 *)

);

 enum2: (

 k := -11,

 i := 0,

 j, (* the value of j is (i + 1) = 1 *)

 l := 5

);

 END_TYPE
Different enumerated data types may use the same identifiers for enumerated values. In order to be uniquely
identified when used in a particular context, enumerated literals may be qualified by a prefix consisting of their
associated data type name and the # sign.

11.1.3.3 SUBRANGES

A subrange declaration specifies that the value of any data element of that type is restricted between and includ-
ing the specified upper and lower limits.

Subranges can be declared using the following syntax:

 TYPE

 <subrange name> : <parent type name> (<lower limit>..<upper limit>
);

 END_TYPE
For a concrete example consider the following declaration:

 TYPE

 int_0_to_100 : INT (0..100);

 END_TYPE

11.1.3.4 STRUCTURES

A STRUCT declaration specifies that data elements of that type shall contain sub-elements of specified types
which can be accessed by the specified names.

Structures can be declared using the following syntax:

 TYPE

 <structured type name> : STRUCT

 <declaration of structurestructure elements>

 END_STRUCT;

 END_TYPE
For example, consider the following declaration:

 TYPE

 structure1 : STRUCT

 elem1 : USINT;

 elem2 : USINT;

 elem3 : INT;

 D1WWTE04E 157

PHC Studio

 elem3 : REAL;

 END_STRUCT;

 END_TYPE

11.1.4 LITERALS

11.1.4.1 NUMERIC LITERALS

External representation of data in the various programmable controller programming languages consists of
numeric literals.

There are two classes of numeric literals: integer literals and real literals. A numeric literal is defined as a deci-
mal number or a based number.

Decimal literals are represented in conventional decimal notation. Real literals are distinguished by the presence
of a decimal point. An exponent indicates the integer power of ten by which the preceding number needs to be
multiplied to obtain the represented value. Decimal literals and their exponents can contain a preceding sign
(+ or -).

Integer literals can also be represented in base 2, 8 or 16. The base is in decimal notation. For base 16, an
extended set of digits consisting of letters A through F is used, with the conventional significance of decimal 10
through 15, respectively. Based numbers do not contain any leading sign (+ or -).

Boolean data are represented by the keywords FALSE or TRUE.

Numerical literal features and examples are shown in the table below.

Feature description Examples

Integer literals -12 0 123 +986

Real literals -12.0 0.0 0.4560

Real literals with exponents
-1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Base 2 literals 2#11111111 (256 decimal)
2#11100000 (240 decimal)

Base 8 literals 8#377 (256 decimal)
8#340 (240 decimal)

Base 16 literals 16#FF or 16#ff (256 decimal)
16#E0 or 16#e0 (240 decimal)

Boolean FALSE and TRUE FALSE TRUE

11.1.4.2 CHARACTER STRING LITERALS

A character string literal is a sequence of zero or more characters prefixed and terminated by the single quote
character (').

The three-character combination of the dollar sign ($) followed by two hexadecimal digits shall be interpreted
as the hexadecimal representation of the eight-bit character code.

Example Explanation
'' Empty string (length zero)
'A' String of length one containing the single character A

' ' String of length one containing the space character

'$'' String of length one containing the single quote character

'”' String of length one containing the double quote character
'RL' String of length two containing CR and LF characters

'$0A' String of length one containing the LF character

 D1WWTE04E158

PHC Studio

Two-character combinations beginning with the dollar sign shall be interpreted as shown in the following table
when they occur in character strings.

Combination Interpretation when printed
$$ Dollar sign
$' Single quote

$L or $1 Line feed

$N or $n Newline

$P or $p Form feed (page)

$R or $r Carriage return

$T or $t Tab

11.1.5 VARIABLES

11.1.5.1 FOREWORD

Variables provide a means of identifying data objects whose contents may change, e.g., data associated with
the inputs, outputs, or memory of the programmable controller. A variable must be declared to be one of the
elementary types. Variables can be represented symbolically, or alternatively in a manner which directly rep-
resents the association of the data element with physical or logical locations in the programmable controller’s
input, output, or memory structure.

Each program organization unit (POU) (i.e., each program, function, or function block) contains at its beginning
at least one declaration part, consisting of one or more structuring elements, which specify the types (and, if
necessary, the physical or logical location) of the variables used in the organization unit. This declaration part
has the textual form of one of the keywords VAR, VAR_INPUT, or VAR_OUTPUT as defined in the keywords sec-
tion, followed in the case of VAR by zero or one occurrence of the qualifiers RETAIN, NON_RETAIN or the qualifier
CONSTANT, and in the case of VAR_INPUT or VAR_OUTPUT by zero or one occurrence of the qualifier RETAIN or
NON_RETAIN, followed by one or more declarations separated by semicolons and terminated by the keyword
END_VAR. A declaration may also specify an initialization for the declared variable, when a programmable con-
troller supports the declaration by the user of initial values for variables.

11.1.5.2 STRUCTURING ELEMENT

The declaration of a variable must be performed within the following program structuring element:

KEYWORD [RETAIN] [CONSTANT]

 Declaration 1

 Declaration 2

...

 Declaration N

END_VAR

 D1WWTE04E 159

PHC Studio

11.1.5.3 KEYWORDS AND SCOPE

Keyword Variable usage
VAR Internal to organization unit.

VAR_INPUT Externally supplied.
VAR_OUTPUT Supplied by organization unit to external entities.

VAR_IN_OUT Supplied by external entities, can be modified within
organization unit.

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL, can be
modified within organization unit.

VAR_GLOBAL Global variable declaration.

The scope (range of validity) of the declarations contained in structuring elements is local to the program or-
ganization unit (POU) in which the declaration part is contained. That is, the declared variables are accessible to
other program organization units except by explicit argument passing via variables which have been declared as
inputs or outputs of those units. The one exception to this rule is the case of variables which have been declared
to be global.

Such variables are accessible to programs in any case, or via a VAR_EXTERNAL declaration to function blocks.
The type of a variable declared in a VAR_EXTERNAL must agree with the type declared in the VAR_GLOBAL block.

To give access to this variables to all type of POU, without using any keyword, you must enable this option in the
code generation tab of the project options (see Paragraph 4.6.2).

There is an error if:

 - any program organization unit attempts to modify the value of a variable that has been declared with the
CONSTANT qualifier;

 - a variable declared as VAR_GLOBAL CONSTANT in a configuration element or program organization unit (the
“containing element”) is used in a VAR_EXTERNAL declaration (without the CONSTANT qualifier) of any element
contained within the containing element.

11.1.5.4 QUALIFIERS

Qualifier Description

CONST
The attribute CONST indicates that the variables within the
structuring elements are constants, i.e. they have a constant value,
which cannot be modified once the PLC project has been compiled.

RETAIN
The attribute RETAIN indicates that the variables within the
structuring elements are retentive, i.e. they keep their value even
after the target device is reset or switched off.

11.1.5.5 SINGLE-ELEMENT VARIABLES AND ARRAYS

A single-element variable represents a single data element of either one of the elementary types or one of the
derived data types.

An array is a collection of data elements of the same data type; in order to access a single element of the array,
a subscript (or index) enclosed in square brackets has to be used. Subscripts can be either integer literals or
single-element variables.

To easily represent data matrices, arrays can be multi-dimensional; in this case, a composite subscript is re-
quired, one index per dimension, separated by commas. The maximum number of dimensions allowed in the
definition of an array is three.

 D1WWTE04E160

PHC Studio

11.1.5.6 DECLARATION SYNTAX

Variables must be declared within structuring elements, using the following syntax:

VarName1 : Typename1 [:= InitialVal1];

VarName2 AT Location2 : Typename2 [:= InitialVal2];

VarName3 : ARRAY [0..N] OF Typename3;
where:

Keyword Description

VarNameX
Variable identifier, consisting of a string of alphanumeric
characters, of length 1 or more. It is used for symbolic
representation of variables.

TypenameX Data type of the variable, selected from elementary data types.
InitialValX The value the variable assumes after reset of the target.
LocationX See the next paragraph.

N Index of the last element, the array having length
N + 1.

11.1.5.7 LOCATION

Variables can be represented symbolically, i.e. accessed through their identifier, or alternatively in a manner
which directly represents the association of the data element with physical or logical locations in the program-
mable controller’s input, output, or memory structure.

Direct representation of a single-element variable is provided by a special symbol formed by the concatenation
of the percent sign “%” , a location prefix and a size prefix, and one or two unsigned integers, separated by
periods (.).

%location.size.index.index
1) location

The location prefix may be one of the following:

Location prefix Description
I Input location
Q Output location

M Memory location

2) size

The size prefix may be one of the following:

Size prefix Description
X Single bit size
B Byte (8 bits) size
W Word (16 bits) size
D Double word (32 bits) size

3) index.index

This sequence of unsigned integers, separated by dots, specifies the actual position of the variable in the
area specified by the location prefix.

 D1WWTE04E 161

PHC Studio

Example:

Direct representation Description

%MW4.6 Word starting from the first byte of the 7th element
of memory datablock 4.

%IX0.4 First bit of the first byte of the 5th element of input
set 0.

Note that the absolute position depends on the size of the datablock elements, not on the size prefix. As a mat-
ter of fact, %MW4.6 and %MD4.6 begin from the same byte in memory, but the former points to an area which is
16 bits shorter than the latter.

For advanced users only: if the index consists of one integer only (no dots), then it loses any reference to data
blocks, and it points directly to the byte in memory having the index value as its absolute address.

Direct representation Description

%MW4.6 Word starting from the first byte of the 7th element
of datablock 4 in memory.

%MW4 Word starting from byte 4 of memory.

Example

VAR [RETAIN] [CONSTANT]
 XQuote : DINT; Enabling : BOOL := FALSE;
 TorqueCurrent AT %MW4.32 : INT;
 Counters : ARRAY [0 .. 9] OF UINT;
Limits: ARRAY [0..3, 0..9]

END_VAR
 - Variable XQuote is 32 bits long, and it is automatically allocated by the PHC Studio compiler.

 - Variable Enabling is initialized to FALSE after target reset.

 - Variable TorqueCurrent is allocated in the memory area of the target device, and it takes 16 bits starting
from the first byte of the 33rd element of datablock 4.

 - Variable Counters is an array of 10 independent variables of type unsigned integer.

11.1.5.8 DECLARING VARIABLES IN PHC STUDIO

Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
the Local variables editor, the Global variables editor, and the Parameters editor, which provide a friendly inter-
face to declare all kinds of variables.

11.1.6 PROGRAM ORGANIZATION UNITS

Program organization units are functions, function blocks, and programs. Program Organization Units can be de-
livered by the manufacturer, or programmed by the user through the means defined in this part of the standard

Program organization units are not recursive; that is, the invocation of a program organization unit cannot cause
the invocation of another program organization unit of the same type.

11.1.6.1 FUNCTIONS

Introduction
For the purposes of programmable controller programming languages, a function is defined as a program or-
ganization unit (POU) which, when executed, yields exactly one data element, which is considered to be the
function result.

Functions contain no internal state information, i.e., invocation of a function with the same arguments (input
variables VAR_INPUT and in-out variables VAR_IN_OUT) always yields the same values (output variables VAR_
OUTPUT, in-out variables VAR_IN_OUT and function result).

 D1WWTE04E162

PHC Studio

Declaration syntax
The declaration of a function must be performed as follows:

FUNCTION FunctionName : RetDataType

VAR_INPUT

 declaration of input variables (see the relevant section)

END_VAR

VAR

 declaration of local variables (see the relevant section)

END_VAR

 Function body

END_FUNCTION

Keyword Description

FunctionName Name of the function being declared.

RetDataType Data type of the value to be returned by the function.

Function body

Specifies the operations to be performed upon the input variables in
order to assign values dependent on the function’s semantics to a
variable with the same name as the function, which represents the
function result. It can be written in any of the languages supported
by PHC Studio.

Declaring functions in PHC Studio
Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
a friendly interface for using functions.

11.1.6.2 FUNCTION BLOCKS

Introduction
For the purposes of programmable controller programming languages, a function block is a program organiza-
tion unit which, when executed, yields one or more values. Multiple, named instances (copies) of a function
block can be created. Each instance has an associated identifier (the instance name), and a data structure con-
taining its input, output and internal variables. All the values of the output variables and the necessary internal
variables of this data structure persist from one execution of the function block to the next; therefore, invocation
of a function block with the same arguments (input variables) does not always yield the same output values.

Only the input and output variables are accessible outside of an instance of a function block, i.e., the function
block’s internal variables are hidden from the user of the function block.

In order to execute its operations, a function block needs to be invoked by another POU. Invocation depends on
the specific language of the module calling the function block.

The scope of an instance of a function block is local to the program organization unit in which it is instantiated.

Declaration syntax
The declaration of a function must be performed as follows:

FUNCTION_BLOCK FunctionBlockName

 VAR_INPUT

 declaration of input variables (see the relevant section)

 END_VAR

 VAR_OUTPUT

 declaration of output variables

 END_VAR

 D1WWTE04E 163

PHC Studio

 VAR_EXTERNAL

 declaration of external variables

 END_VAR

 VAR

 declaration of local variables

 END_VAR

 Function block body

END_FUNCTION_BLOCK

Keyword Description

FunctionBlockName Name of the function block being declared (note: name of the
template, not of its instances).

VAR_EXTERNAL .. END_VAR
A function block can access global variables only if they are listed
in a VAR_EXTERNAL structuring element. Variables passed to the FB
via a VAR_EXTERNAL construct can be modified from within the FB.

Function block body

Specifies the operations to be performed upon the input variables
in order to assign values to the output variables - dependent on
the function block’s semantics and on the value of the internal
variables. It can be written in any of the languages supported by
PHC Studio.

Declaring functions in PHC Studio
Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
a friendly interface for using function blocks.

 D1WWTE04E164

PHC Studio

11.1.6.3 PROGRAMS

Introduction
A program is defined in IEC 61131-1 as a “logical assembly of all the programming language elements and
constructs necessary for the intended signal processing required for the control of a machine or process by a
programmable controller system”.

Declaration syntax
The declaration of a program must be performed as follows:

PROGRAM < program name>

 Declaration of variables (see the relevant section)

 Program body

END_PROGRAM

Keyword Description
Program Name Name of the program being declared.

Program body
Specifies the operations to be performed to get the intended signal
processing. It can be written in any of the languages supported by
PHC Studio.

Writing programs in PHC Studio
Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
a friendly interface for writing programs.

11.1.7 IEC 61131-3 STANDARD FUNCTIONS

This paragraph is a reference of all IEC 61131-3 standard functions available in PHC Studio, along with a few
others, which may be considered as PHC Studio’s extensions to the standard.

These functions are common to the whole set of programming languages and can therefore be used in any Pro-
grammable Organization Unit (POU).

A function specified in this paragraph to be extensible (Ext.) is allowed to have a variable number of inputs.

Type conversion functions
According to the IEC 61131-3 standard, type conversion functions shall have the form *_TO_**, where “*” is
the type of the input variable, and “**” the type of the output variable (for example, INT_TO_REAL). PHC Studio
provides a more convenient set of overloaded type conversion functions, relieving the developer to specify the
input variable type.

TO_BOOL

Description Conversion to BOOL (boolean)

Number of operands 1

Input data type Any numerical type

Output data type BOOL

Examples
out := TO_BOOL(0); (* out = FALSE *)

out := TO_BOOL(1); (* out = TRUE *)

out := TO_BOOL(1000); (* out = TRUE *)

 D1WWTE04E 165

PHC Studio

TO_SINT

Description Conversion to SINT (8-bit signed integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type SINT

Examples
out := TO_SINT(-1); (* out = -1 *)

out := TO_SINT(16#100); (* out = 0 *)

TO_USINT

Description Conversion to USINT (8-bit unsigned integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type USINT

Examples
out := TO_USINT(-1); (* out = 255 *)

out := TO_USINT(16#100); (* out = 0 *)

TO_INT

Description Conversion to INT (16-bit signed integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type INT

Examples
out := TO_INT(-1000.0); (* out = -1000 *)

out := TO_INT(16#8000); (* out = -32768 *)

TO_UINT

Description Conversion to UINT (16-bit unsigned integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type UINT

Examples
out := TO_UINT(1000.0); (* out = 1000 *)

out := TO_UINT(16#8000); (* out = 32768 *)

TO_DINT

Description Conversion to DINT (32-bit signed integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type DINT

Examples
out := TO_DINT(10.0); (* out = 10 *)

out := TO_DINT(16#FFFFFFFF); (* out = -1 *)

 D1WWTE04E166

PHC Studio

TO_UDINT

Description Conversion to UDINT (32-bit unsigned integer)

Number of operands 1

Input data type Any numerical type or STRING

Output data type UDINT

Examples
out := TO_UDINT(10.0); (* out = 10 *)

out := TO_UDINT(16#FFFFFFFF); (* out = 4294967295 *)

TO_BYTE

Description Conversion to BYTE (8-bit string)

Number of operands 1

Input data type Any numerical type or STRING

Output data type BYTE

Examples
out := TO_BYTE(-1); (* out = 16#FF *)

out := TO_BYTE(16#100); (* out = 16#00 *)

TO_WORD

Description Conversion to WORD (16-bit string)

Number of operands 1

Input data type Any numerical type or STRING

Output data type WORD

Examples
out := TO_WORD(1000.0); (* out = 16#03E8 *)

out := TO_WORD(-32768); (* out = 16#8000 *)

TO_DWORD

Description Conversion to DWORD (32-bit string)

Number of operands 1

Input data type Any numerical type or STRING

Output data type DWORD

Examples
out := TO_DWORD(10.0); (* out = 16#0000000A *)

out := TO_DWORD(-1); (* out = 16#FFFFFFFF *)

TO_REAL

Description Conversion to REAL (32-bit floating point)

Number of operands 1

Input data type Any numerical type or STRING

Output data type REAL

Examples
out := TO_REAL(-1000); (* out = -1000.0 *)

out := TO_REAL(16#8000); (* out = -32768.0 *)

 D1WWTE04E 167

PHC Studio

TO_LREAL

Description Conversion to LREAL (64-bit floating point)

Number of operands 1

Input data type Any numerical type or STRING

Output data type LREAL

Examples
out := TO_LREAL(-1000); (* out = -1000.0 *)

out := TO_LREAL(16#8000); (* out = -32768.0 *)

Numerical functions
The availability of the following functions depends on the target device. Please refer to your hardware supplier
for details.

ABS

Description Absolute value. Computes the absolute value of input #0

Number of operands 1

Input data type Any numerical type

Output data type Same as input

Examples
OUT := ABS(-5);(* OUT = 5 *)

OUT := ABS(-1.618);(* OUT = 1.618 *)

OUT := ABS(3.141592);(* OUT = 3.141592 *)

SQRT

Description Square root. Computes the square root of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := SQRT(4.0); (* OUT = 2.0 *)

LN

Description Natural logarithm. Computes the logarithm with base e of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := LN(2.718281); (* OUT = 1.0 *)

LOG

Description Common logarithm. Computes the logarithm with base 10 of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := LOG(100.0);(* OUT = 2.0 *)

 D1WWTE04E168

PHC Studio

EXP

Description Natural exponential. Computes the exponential function of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := EXP(1.0); (* OUT ~ 2.718281 *)

SIN

Description Sine. Computes the sine function of input #0 expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := SIN(0.0); (* OUT = 0.0 *)

OUT := SIN(2.5 * 3.141592); (* OUT ~ 1.0 *)

COS

Description Cosine. Computes the cosine function of input #0 expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := COS(0.0); (* OUT = 1.0 *)

OUT := COS(-3.141592); (* OUT ~ -1.0 *)

TAN

Description Tangent. Computes the tangent function of input #0 expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := TAN(0.0); (* OUT = 0.0 *)

OUT := TAN(3.141592 / 4.0); (* OUT ~ 1.0 *)

ASIN

Description Arc sine. Computes the principal arc sine of input #0; result is expressed in
radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := ASIN(0.0); (* OUT = 0.0 *)

OUT := ASIN(1.0); (* OUT = PI / 2 *)

 D1WWTE04E 169

PHC Studio

ACOS

Description Arc cosine. Computes the principal arc cosine of input #0; result is
expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := ACOS(1.0); (* OUT = 0.0 *)

OUT := ACOS(-1.0); (* OUT = PI *)

ATAN

Description Arc tangent. Computes the principal arc tangent of input #0; result is
expressed in radians

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := ATAN(0.0); (* OUT = 0.0 *)

OUT := ATAN(1.0); (* OUT = PI / 4 *)

ADD

Description Arithmetic addition. Computes the sum of the two inputs.

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Inputs

Examples OUT := ADD(20, 40); (* OUT = 60 *)

MUL

Description Arithmetic multiplication. Multiplies the two inputs.

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Inputs

Examples OUT := MUL(10, 10); (* OUT = 100 *)

SUB

Description Arithmetic subtraction. Subtracts input #1 from input #0

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Inputs

Examples OUT := SUB(10, 3); (* OUT = 7 *)

 D1WWTE04E170

PHC Studio

DIV

Description Arithmetic division. Divides input #0 by input #1

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Inputs

Examples OUT := DIV(20, 2); (* OUT = 10 *)

MOD

Description Module. Computes input #0 module input #1

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Inputs

Examples OUT := MOD(10, 3); (* OUT = 1 *)

POW

Description Exponentiation. Raises Base to the power Expo

Number of operands 2

Input data type
LREAL where available, REAL otherwise;

LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := POW(2.0, 3.0); (* OUT = 8.0 *)

OUT := POW(-1.0, 5.0); (* OUT = -1.0 *)

ATAN2*

Description Arc tangent (with 2 parameters). Computes the principal arc tangent of
Y/X; result is expressed in radians

Number of operands 2

Input data type
LREAL where available, REAL otherwise;

LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples

OUT := ATAN2(0.0, 1.0); (* OUT = 0.0 *)

OUT := ATAN2(1.0, 1.0); (* OUT = PI / 4 *)

OUT := ATAN2(-1.0, -1.0); (* OUT = (-3/4) * PI *)

OUT := ATAN2(1.0, 0.0); (* OUT = PI / 2 *)

SINH*

Description Hyperbolic sine. Computes the hyperbolic sine function of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := SINH(0.0); (* OUT = 0.0 *)

 D1WWTE04E 171

PHC Studio

COSH*

Description Hyperbolic cosine. Computes the hyperbolic cosine function of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := COSH(0.0); (* OUT = 1.0 *)

TANH*

Description Hyperbolic tangent. Computes the hyperbolic tangent function of input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples OUT := TANH(0.0); (* OUT = 0.0 *)

CEIL*

Description Rounding up to integer. Returns the smallest integer that is greater than or
equal to input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := CEIL(1.95); (* OUT = 2.0 *)

OUT := CEIL(-1.27); (* OUT = -1.0 *)

FLOOR*

Description Rounding down to integer. Returns the largest integer that is less than or
equal to input #0

Number of operands 1

Input data type LREAL where available, REAL otherwise

Output data type LREAL where available, REAL otherwise

Examples
OUT := FLOOR(1.95); (* OUT = 1.0 *)

OUT := FLOOR(-1.27); (* OUT = -2.0 *)

*: function provided as extension to the IEC 61131-3 standard.

Bit string functions

SHL

Description Input#0 left-shifted of Input #1 bits, zero filled on the right.

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Input #0

Examples
OUT := SHL(IN := 16#1000CAFE, 16);

(* OUT = 16#CAFE0000 *)

 D1WWTE04E172

PHC Studio

SHR

Description Input #0 right-shifted of Input #1 bits, zero filled on the left.

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Input #0

Examples
OUT := SHR(IN := 16#1000CAFE, 24);

(* OUT = 16#00000010 *)

ROL

Description Input #0 left-shifted of Input #1 bits, circular.

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Input #0

Examples
OUT := ROL(IN := 16#1000CAFE, 4);

(* OUT = 16#000CAFE1 *)

ROR

Description Input #0 right-shifted of Input #1 bits, circular.

Number of operands 2

Input data type Any numerical type, Any numerical type

Output data type Same as Input #0

Examples
OUT := ROR(IN := 16#1000CAFE, 16);

(* OUT = 16#CAFE1000 *)

AND

Description Logical AND if both Input #0 and Input #1 are BOOL, otherwise bitwise
AND.

Number of operands 2

Input data type Any but STRING, Any but STRING

Output data type Same as Inputs

Examples
OUT := TRUE AND FALSE; (* OUT = FALSE *)

OUT := 16#1234 AND 16#5678; (* OUT = 16#1230 *)

OR

Description Logical OR if both Input #0 and Input #1 are BOOL, otherwise bitwise OR.

Number of operands 2

Input data type Any but STRING, Any but STRING

Output data type Same as Inputs

Examples
OUT := TRUE OR FALSE; (* OUT = FALSE *)

OUT := 16#1234 OR 16#5678;(* OUT = 16#567C *)

 D1WWTE04E 173

PHC Studio

XOR

Description Logical XOR if both Input #0 and Input #1 are BOOL, otherwise bitwise
XOR.

Number of operands 2

Input data type Any but STRING, Any but STRING

Output data type Same as Inputs

Examples
OUT := TRUE OR FALSE; (* OUT = TRUE *)

OUT := 16#1234 OR 16#5678; (* OUT = 16#444C *)

NOT

Description Logical NOT if Input is BOOL, otherwise bitwise NOT.

Number of operands 1

Input data type Any but STRING

Output data type Same as Inputs

Examples
OUT := NOT FALSE; (* OUT = TRUE *)

OUT := NOT 16#1234;(* OUT = 16#EDCB *)

Selection functions

SEL

Description Binary selection

Number of operands 3

Input data type BOOL, Any, Any

Output data type Same as selected Input

Examples
OUT := SEL(G := FALSE, IN0 := X, IN1 := 5);

(* OUT = X *)

MAX

Description Maximum value selection

Number of operands 2, extensible

Input data type Any numerical type, Any numerical type, .., Any numerical type

Output data type Same as max Input

Examples OUT := MAX(-8, 120, -1000); (* OUT = 120 *)

MIN

Description Minimum value selection

Number of operands 2, extensible

Input data type Any numerical type, Any numerical type, .., Any numerical type

Output data type Same as min Input

Examples OUT := MIN(-8, 120, -1000); (* OUT = -1000 *)

 D1WWTE04E174

PHC Studio

LIMIT

Description Limits Input #0 to be equal or more than Input#1, and equal or less than
Input #2.

Number of operands 3

Input data type Any numerical type, Any numerical type, Any numerical type

Output data type Same as Inputs

Examples
OUT := LIMIT(IN := 4, MN := 0, MX := 5); (* OUT = 4 *)

OUT := LIMIT(IN := 88, MN := 0, MX := 5);(* OUT = 5 *)

OUT := LIMIT(IN := -1, MN := 0, MX := 5);(* OUT = 0 *)

MUX

Description Multiplexer. Selects one of N inputs depending on input K

Number of operands 3, extensible

Input data type Any numerical type, Any numerical type, ..., Any numerical type

Output data type Same as selected Input

Examples OUT := MUX(0, A, B, C); (* OUT = A *)

Comparison functions
Comparison functions can be also used to compare strings if this feature is supported by target device.

GT

Description Greater than. Returns TRUE if Input #0 > Input #1, otherwise FALSE.

Number of operands 2

Input data type Any but BOOL, Any but BOOL

Output data type BOOL

Examples
OUT := GT(0, 20); (* OUT = FALSE *)

OUT := GT(‘AZ’, ‘ABC’); (* OUT = TRUE *)

GE

Description Greater than or equal to. Returns TRUE if Input #0 >= Input #1, otherwise
FALSE.

Number of operands 2

Input data type Any but BOOL, Any but BOOL

Output data type BOOL

Examples
OUT := GE(20, 20); (* OUT = TRUE *)

OUT := GE(‘AZ’, ‘ABC’); (* OUT = FALSE *)

 D1WWTE04E 175

PHC Studio

EQ

Description Equal to. Returns TRUE if Input #0 = Input #1, otherwise FALSE.

Number of operands 2

Input data type Any, Any

Output data type BOOL

Examples
OUT := EQ(TRUE, FALSE); (* OUT = FALSE *)

OUT := EQ(‘AZ’, ‘ABC’); (* OUT = FALSE *)

LT

Description Less than. Returns TRUE if Input #0 < Input #1, otherwise FALSE.

Number of operands 2

Input data type Any but BOOL, Any but BOOL

Output data type BOOL

Examples
OUT := LT(0, 20); (* OUT = TRUE *)

OUT := LT(‘AZ’, ‘ABC’); (* OUT = FALSE *)

LE

Description Less than or equal to. Returns TRUE if Input #0 <= Input #1, otherwise
FALSE.

Number of operands 2

Input data type Any but BOOL, Any but BOOL

Output data type BOOL

Examples
OUT := LE(20, 20); (* OUT = TRUE *)

OUT := LE(‘AZ’, ‘ABC’); (* OUT = FALSE *)

NE

Description Not equal to. Returns TRUE if Input #0 != Input #1, otherwise FALSE.

Number of operands 2

Input data type Any, Any

Output data type BOOL

Examples
OUT := NE(TRUE, FALSE); (* OUT = TRUE *)

OUT := NE(‘AZ’, ‘ABC’); (* OUT = TRUE *)

 D1WWTE04E176

PHC Studio

String functions
The availability of the following functions depends on the target device. Please refer to your hardware supplier
for details.

CONCAT

Description Character string concatenation

Number of operands 2

Input data type STRING, STRING

Output data type STRING

Examples OUT := CONCAT(‘AB’, ‘CD’); (* OUT = ‘ABCD’ *)

DELETE

Description Delete L characters of IN, beginning at the P-th character position

Number of operands 3

Input data type STRING, UINT, UINT

Output data type STRING

Examples
OUT := DELETE(IN := ‘ABXYC’, L := 2, P := 3);

(* OUT = ‘ABC’ *)

FIND

Description Find the character position of the beginning of the first occurrence of IN2 in
IN1. If no occurrence of IN2 is found, then OUT := 0.

Number of operands 2

Input data type STRING, STRING

Output data type UINT

Examples OUT := FIND(IN1 := ‘ABCBC’, IN2 := ‘BC’); (* OUT = 2 *)

INSERT

Description Insert IN2 into IN1 after the P-th character position

Number of operands 3

Input data type STRING, STRING, UINT

Output data type STRING

Examples
OUT := INSERT(IN1 := ‘ABC’, IN2 := ‘XY’, P := 2);

(* OUT = ‘ABXYC’ *)

LEFT

Description Leftmost L characters of IN

Number of operands 2

Input data type STRING, UINT

Output data type STRING

Examples OUT := LEFT(IN := ‘ASTR’, L := 3); (* OUT = ‘AST’ *)

 D1WWTE04E 177

PHC Studio

MID

Description L characters of IN, beginning at the P-th

Number of operands 3

Input data type STRING, UINT, UINT

Output data type STRING

Examples
OUT := MID(IN := ‘ASTR’, L := 2, P := 2);

(* OUT = ‘ST’ *)

REPLACE

Description Replace L characters of IN1 by IN2, starting at the P-th character position

Number of operands 4

Input data type STRING, STRING, UINT, UINT

Output data type STRING

Examples OUT := REPLACE(IN1 := ‘ABCDE’, IN2 := ‘X’, L := 2, P := 3); (*
OUT = ‘ABXE’ *)

RIGHT

Description Rightmost L characters of IN

Number of operands 2

Input data type STRING, UINT

Output data type STRING

Examples OUT := RIGHT(IN := ‘ASTR’, L := 3); (* OUT = ‘STR’ *)

TO_STRING

Description Conversion to STRING

Number of operands 1

Input data type Any numerical type

Output data type STRING

Examples
str := TO_STRING(10.0); (* str = ‘10,0’ *)

str := TO_STRING(-1); (* str = ‘-1’ *)

TO_STRINGFORMAT

Description Conversion to STRING, with format specifier

Number of operands 2

Input data type Any numerical type, STRING

Output data type STRING

Examples str := TO_STRINGFORMAT(10, ‘%04d’); (* str = ‘0010’ *)

 D1WWTE04E178

PHC Studio

11.2 INSTRUCTION LIST (IL)

This section defines the semantics of the IL (Instruction List) language.

11.2.1 SYNTAX AND SEMANTICS

11.2.1.1 SYNTAX OF IL INSTRUCTIONS

IL code is composed of a sequence of instructions. Each instruction begins on a new line and contains an opera-
tor with optional modifiers, and, if necessary for the particular operation, one or more operands separated by
commas. Operands can be any of the data representations for literals and for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty lines can be inserted
between instructions.

Example
Let us parse a small piece of code:

START:

 LD %IX1 (* Push button *)

 ANDN %MX5.4 (* Not inhibited *)

 ST %QX2 (* Fan out *)
The elements making up each instruction are classified as follows:

Label Operator
[+ modifier] Operand Comment

START: LD %IX1 (* Push button *)

ANDN %MX5.4 (* Not inhibited *)

ST %QX2 (* Fan out *)

Semantics of IL instructions
 - Accumulator

By accumulator a register is meant containing the value of the currently evaluated result.

 - Operators

Unless otherwise specified, the semantics of the operators is

accumulator := accumulator OP operand
That is, the value of the accumulator is replaced by the result yielded by operation OP applied to the cur-
rent value of the accumulator itself, with respect to the operand. For instance, the instruction “AND %IX1” is
interpreted as

accumulator := accumulator AND %IX1
and the instruction “GT %IW10” will have the Boolean result TRUE if the current value of the accumulator is
greater than the value of input word 10, and the Boolean result FALSE otherwise:

accumulator := accumulator GT %IW10
 - Modifiers

The modifier “N” indicates bitwise negation of the operand.

The left parenthesis modifier “(” indicates that evaluation of the operator must be deferred until a right pa-
renthesis operator “)” is encountered. The form of a parenthesized sequence of instructions is shown below,
referred to the instruction

accumulator := accumulator AND (%MX1.3 OR %MX1.4)
The modifier “C” indicates that the associated instruction can be performed only if the value of the currently
evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with the “N” modifier).

 D1WWTE04E 179

PHC Studio

11.2.2 STANDARD OPERATORS

Standard operators with their allowed modifiers and operands are as listed below.

Operator Modifiers Supported operand
types: Acc_type, Op_type Semantics

LD N Any, Any Sets the accumulator equal to
operand.

ST N Any, Any Stores the accumulator into operand
location.

S BOOL, BOOL Sets operand to TRUE if accumulator
is TRUE.

R BOOL, BOOL Sets operand to FALSE if accumulator
is TRUE.

AND N, (Any but REAL, Any but REAL Logical or bitwise AND
OR N, (Any but REAL, Any but REAL Logical or bitwise OR
XOR N, (Any but REAL, Any but REAL Logical or bitwise XOR
NOT Any but REAL Logical or bitwise NOT
ADD (Any but BOOL Addition
SUB (Any but BOOL Subtraction
MUL (Any but BOOL Multiplication
DIV (Any but BOOL Division
MOD (Any but BOOL Modulo-division
GT (Any but BOOL Comparison:
GE (Any but BOOL Comparison: =
EQ (Any but BOOL Comparison: =
NE (Any but BOOL Comparison:
LE (Any but BOOL Comparison:
LT (Any but BOOL Comparison:

JMP C, N Label Jumps to label

CAL C, N FB instance name Calls function block

RET C, N Returns from called program, function,
or function block.

) Evaluates deferred operation.

 D1WWTE04E180

PHC Studio

11.2.3 CALLING FUNCTIONS AND FUNCTION BLOCKS

11.2.3.1 CALLING FUNCTIONS

Functions (as defined in the relevant section) are invoked by placing the function name in the operator field. This
invocation takes the following form:

LD 1

MUX 5, var0, -6.5, 3.14

ST vRES
Note that the first argument is not contained in the input list, but the accumulator is used as the first argu-
ment of the function. Additional arguments (starting with the 2nd), if required, are given in the operand field,
separated by commas, in the order of their declaration. For example, operator MUX in the table above takes 5
operands, the first of which is loaded into the accumulator, whereas the remaining 4 arguments are orderly
reported after the function name.

The following rules apply to function invocation.
1) Assignments to VAR_INPUT arguments may be empty, constants, or variables.

2) Execution of a function ends upon reaching a RET instruction or the physical end of the function. When
this happens, the output variable of the function is copied into the accumulator.

Calling Function Blocks
Function blocks (as defined in the relevant section) can be invoked conditionally and unconditionally via the CAL
operator. This invocation takes the following form:

LD A

ADD 5

ST INST5.IN1

LD 3.141592

ST INST5.IN2

CAL INST5

LD INST5.OUT1

ST vRES

LD INST5.OUT2

ST vVALID
This method of invocation is equivalent to a CAL with an argument list, which contains only one variable with
the name of the FB instance.

Input arguments are passed to / output arguments are read from the FB instance through ST / LD operations
performed on operands taking the following form:

FBInstanceName.IO_var

where

Keyword Description
FBInstanceName Name of the instance to be invoked.

IO_var Input or output variable to be written / read.

 D1WWTE04E 181

PHC Studio

11.3 FUNCTION BLOCK DIAGRAM (FBD)

This section defines the semantics of the FBD (Function Block Diagram) language.

11.3.1 REPRESENTATION OF LINES AND BLOCKS

The graphic language elements are drawn using graphic or semi graphic elements, as shown in the table below.

No storage of data or association with data elements can be associated with the use of connectors; hence, to
avoid ambiguity, connectors cannot be given any identifier.

Feature Example

Lines

Line crossing with connection

Blocks with connecting lines and
unconnected pins

11.3.2 DIRECTION OF FLOW IN NETWORKS

A network is defined as a maximal set of interconnected graphic elements. A network label delimited on the right
by a colon (:) can be associated with each network or group of networks. The scope of a network and its label
is local to the program organization unit (POU) where the network is located.

Graphic languages are used to represent the flow of a conceptual quantity through one or more networks rep-
resenting a control plan. Namely, in the case of function block diagrams (FBD), the “Signal flow” is typically
used, analogous to the flow of signals between elements of a signal processing system. Signal flow in the FBD
language is from the output (right-hand) side of a function or function block to the input (left-hand) side of the
function or function block(s) so connected.

11.3.3 EVALUATION OF NETWORKS

11.3.3.1 ORDER OF EVALUATION OF NETWORKS

The order in which networks and their elements are evaluated is not necessarily the same as the order in which
they are labeled or displayed. When the body of a program organization unit (POU) consists of one or more net-
works, the results of network evaluation within the aforesaid body are functionally equivalent to the observance
of the following rules:

1) No element of a network is evaluated until the states of all of its inputs have been evaluated.

2) The evaluation of a network element is not complete until the states of all of its outputs have been evalu-
ated.

3) As stated when describing the FBD editor, a network number is automatically assigned to every network.
Within a program organization unit (POU), networks are evaluated according to the sequence of their
number: network N is evaluated before network N+1, unless otherwise specified by means of the execution
control elements.

 D1WWTE04E182

PHC Studio

11.3.3.2 COMBINATION OF ELEMENTS

Elements of the FBD language must be interconnected by signal flow lines.

Outputs of blocks shall not be connected together. In particular, the “wired-OR” construct of the LD language is
not allowed, as an explicit Boolean “OR” block is required.

Feedback
A feedback path is said to exist in a network when the output of a function or function block is used as the input
to a function or function block which precedes it in the network; the associated variable is called a feedback
variable.

Feedback paths can be utilized subject to the following rules:

1) Feedback variables must be initialized, and the initial value is used during the first evaluation of the net-
work. Look at the Global variables editor, the Local variables editor, or the Parameters editor to
know how to initialize the respective item.

2) Once the element with a feedback variable as output has been evaluated, the new value of the feedback
variable is used until the next evaluation of the element.

For instance, the Boolean variable RUN is the feedback variable in the example shown below.

Explicit loop

Implicit loop

 D1WWTE04E 183

PHC Studio

11.3.4 EXECUTION CONTROL ELEMENTS

11.3.4.1 EN/ENO SIGNALS

Additional Boolean EN (Enable) input and ENO (Enable Out) characterize PHC Studio blocks, according to the
declarations

EN ENO
VAR_INPUT

 EN: BOOL := 1;

END_VAR

VAR_OUTPUT

 ENO: BOOL;

END_VAR

See the Modifying properties of blocks section to know how to add these pins to a block.

When these variables are used, the execution of the operations defined by the block are controlled according to
the following rules:

1) If the value of EN is FALSE when the block is invoked, the operations defined by the function body are not
executed and the value of ENO is reset to FALSE by the programmable controller system.

2) Otherwise, the value of ENO is set to TRUE by the programmable controller system, and the operations
defined by the block body are executed.

11.3.4.2 JUMPS

Jumps are represented by a Boolean signal line terminated in a double arrowhead. The signal line for a jump
condition originates at a Boolean variable, or at a Boolean output of a function or function block. A transfer of
program control to the designated network label occurs when the Boolean value of the signal line is TRUE; thus,
the unconditional jump is a special case of the conditional jump.

The target of a jump is a network label within the program organization unit within which the jump occurs.

Symbol / Example Explanation

Unconditional Jump

Conditional Jump

Example: Jump Condition
Network

 D1WWTE04E184

PHC Studio

11.3.4.3 CONDITIONAL RETURNS

 - Conditional returns from functions and function blocks are implemented using a RETURN construction as shown
in the table below. Program execution is transferred back to the invoking entity when the Boolean input is
TRUE, and continues in the normal fashion when the Boolean input is FALSE.

 - Unconditional returns are provided by the physical end of the function or function block.

Symbol / Example Explanation

Conditional Return

Example: Return Condition
Network

11.4 LADDER DIAGRAM (LD)

This section defines the semantics of the LD (Ladder Diagram) language.

11.4.1 POWER RAILS

The LD network is delimited on the left side by a vertical line known as the left power rail, and on the right side
by a vertical line known as the right power rail. The right power rail may be explicit in the PHC Studio imple-
mentation and it is always shown.

The two power rails are always connected with an horizontal line named signal link. All LD elements should be
placed and connected to the signal link.

Description Symbol

Left power rail (with attached horizontal
link)

Right power rail (with attached horizontal
link)

Power rails connected by the signal link

 D1WWTE04E 185

PHC Studio

11.4.2 LINK ELEMENTS AND STATES

Link elements may be horizontal or vertical. The state of the link elements shall be denoted “ON” or “OFF”, cor-
responding to the literal Boolean values 1 or 0, respectively. The term link state shall be synonymous with the
term power flow.

The following properties apply to the link elements:

 - The state of the left rail shall be considered ON at all times. No state is defined for the right rail.

 - A horizontal link element is indicated by a horizontal line. A horizontal link element transmits the state of the
element on its immediate left to the element on its immediate right.

 - The vertical link element consists of a vertical line intersecting with one or more horizontal link elements on
each side. The state of the vertical link represents the inclusive OR of the ON states of the horizontal links on
its left side, that is, the state of the vertical link is:

OFF if the states of all the attached horizontal links to its left are OFF;

ON if the state of one or more of the attached horizontal links to its left is ON.

 - The state of the vertical link is copied to all of the attached horizontal links on its right.

 - The state of the vertical link is not copied to any of the attached horizontal links on its left.

Description Symbol

Vertical link with attached
horizontal links

11.4.3 CONTACTS

A contact is an element which imparts a state to the horizontal link on its right side which is equal to the Boolean
AND of the state of the horizontal link at its left side with an appropriate function of an associated Boolean input,
output, or memory variable.

A contact does not modify the value of the associated Boolean variable. Standard contact symbols are given in
the following table.

 D1WWTE04E186

PHC Studio

Name Description Symbol

Normally open
contact

The state of the left link is copied to the
right link if the state of the associated
Boolean variable is ON. Otherwise, the
state of the right link is OFF.

Normally closed
contact

The state of the left link is copied to the
right link if the state of the associated
Boolean variable is OFF. Otherwise, the
state of the right link is OFF.

Positive transition-sensing
contact

The state of the right link is ON from one
evaluation of this element to the next when
a transition of the associated variable from
OFF to ON is sensed at the same time that
the state of the left link is ON. The state
of the right link shall be OFF at all other
times.

Negative transition-sensing
contact

The state of the right link is ON from one
evaluation of this element to the next when
a transition of the associated variable from
ON to OFF is sensed at the same time that
the state of the left link is ON. The state
of the right link shall be OFF at all other
times.

11.4.4 COILS

A coil copies the state of the link on its left side to the link on its right side without modification, and stores an
appropriate function of the state or transition of the left link into the associated Boolean variable.

Standard coil symbols are shown in the following table.

Name Description Symbol

Coil The state of the left link is copied to the
associated Boolean variable.

Negated coil

The inverse of the state of the left link
is copied to the associated Boolean
variable, that is, if the state of the
left link is OFF, then the state of the
associated variable is ON, and vice
versa.

SET (latch) coil

The associated Boolean variable is set to
the ON state when the left link is in the
ON state, and remains set until reset by
a RESET coil.

RESET (unlatch) coil

The associated Boolean variable is reset
to the OFF state when the left link is in
the ON state, and remains reset until
set by a SET coil.

Positive transition-
sensing coil

The state of the associated Boolean
variable is ON from one evaluation
of this element to the next when a
transition of the left link from OFF to ON
is sensed.

Negative transition-sensing
coil

The state of the associated Boolean
variable is ON from one evaluation
of this element to the next when a
transition of the left link from ON to OFF
is sensed.

 D1WWTE04E 187

PHC Studio

11.4.5 OPERATORS, FUNCTIONS AND FUNCTION BLOCKS

The representation of functions and function blocks in the LD language is similar to the one used for FBD. At
least one Boolean input and one Boolean output shall be shown on each block to allow for power flow through
the block as shown in the following figure.

11.5 STRUCTURED TEXT (ST)

This section defines the semantics of the ST (Structured Text) language.

11.5.1 EXPRESSIONS

An expression is a construct which, when evaluated, yields a value corresponding to one of the data types listed
in the elementary data types table. PHC Studio does not set any constraint on the maximum length of expres-
sions.

Expressions are composed of operators and operands.

11.5.1.1 OPERANDS

An operand can be a literal, a variable, a function invocation, or another expression.

11.5.1.2 OPERATORS

Open the table of operators to see the list of all the operators supported by ST. The evaluation of an expression
consists of applying the operators to the operands in a sequence defined by the operator precedence rules.

11.5.1.3 OPERATOR PRECEDENCE RULES

Operators have different levels of precedence, as specified in the table of operators. The operator with high-
est precedence in an expression is applied first, followed by the operator of next lower precedence, etc., until
evaluation is complete. Operators of equal precedence are applied as written in the expression from left to right.

For example if A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then:

A+B-C*ABS(D)
yields -9, and:

(A+B-C)*ABS(D)
yields 0.

When an operator has two operands, the leftmost operand is evaluated first. For example, in the expression

SIN(A)*COS(B)
the expression SIN(A) is evaluated first, followed by COS(B), followed by evaluation of the product.

Functions are invoked as elements of expressions consisting of the function name followed by a parenthesized
list of arguments, as defined in the relevant section.

 D1WWTE04E188

PHC Studio

11.5.1.4 OPERATORS OF THE ST LANGUAGE

Operation Symbol Precedence

Parenthesization (<expression>) HIGHEST

.

.

.

.

.

.

.

.

.

.

.

.

.

Function evaluation <fname>(<arglist>)

Negation Complement
-

NOT

Exponentiation **

Multiply Divide Modulo

*

/

MOD

Add Subtract
+

-

Comparison <, >, <=, >=

Equality Inequality
=

<>

Boolean AND AND

Boolean Exclusive OR XOR

Boolean OR OR LOWEST

11.5.2 STATEMENTS IN ST

All statements comply with the following rules:

 - they are terminated by semicolons;

 - unlike IL, a carriage return or new line character is treated the same as a space character;

 - PHC Studio does not set any constraint on the maximum length of statements.

ST statements can be divided into classes, according to their semantics.

11.5.2.1 ASSIGNMENTS

Semantics
The assignment statement replaces the current value of a single or multi-element variable by the result of
evaluating an expression.

The assignment statement is also used to assign the value to be returned by a function, by placing the function
name to the left of an assignment operator in the body of the function declaration. The value returned by the
function is the result of the most recent evaluation of such an assignment.

Syntax
An assignment statement consists of a variable reference on the left-hand side, followed by the assignment
operator “:=”, followed by the expression to be evaluated. For instance, the statement

A := B ;

would be used to replace the single data value of variable A by the current value of variable B if both were of
type INT.

 D1WWTE04E 189

PHC Studio

Examples

a := b ;
assignment

pCV := pCV + 1 ;
assignment

c := SIN(x);
assignment with function invocation

FUNCTION SIMPLE_FUN : REAL

variables declaration

...

function body

...

SIMPLE_FUN := a * b - c ;

END_FUNCTION
assigning the output value to a function

11.5.2.2 FUNCTION AND FUNCTION BLOCK STATEMENTS

Semantics
 - Functions are invoked as elements of expressions consisting of the function name followed by a parenthesized

list of arguments. Each argument can be a literal, a variable, or an arbitrarily complex expression.

 - Function blocks are invoked by a statement consisting of the name of the function block instance followed by
a parenthesized list of arguments. Both invocation with formal argument list and with assignment of argu-
ments are supported.

 - RETURN: function and function block control statements consist of the mechanisms for invoking function
blocks and for returning control to the invoking entity before the physical end of a function or function block.
The RETURN statement provides early exit from a function or a function block (e.g., as the result of the evalu-
ation of an IF statement).

 D1WWTE04E190

PHC Studio

Syntax
1) Function:

 dst_var := function_name(arg1, arg2 , ... , argN);

2) Function block with formal argument list:

 instance_name(var_in1 := arg1 ,
 var_in2 := arg2 ,
 ... ,
 var_inN := argN);

3) Function block with assignment of arguments:

 instance_name.var_in1 := arg1;
 ...
 instance_name.var_inN := argN;
 instance_name();

4) Function and function block control statement:

 RETURN;

Examples

CMD_TMR(IN := %IX5,

 PT:= 300) ;
FB invocation with formal argument list:

IN := %IX5 ;

PT:= 300 ;

CMD_TMR() ;
FB invocation with assignment of arguments:

a := CMD_TMR.Q;
FB output usage:

RETURN ;
early exit from function or function block.

11.5.2.3 SELECTION STATEMENTS

Semantics
Selection statements include the IF and CASE statements. A selection statement selects one (or a group) of its
component statements for execution based on a specified condition.

 - IF: the IF statement specifies that a group of statements is to be executed only if the associated Boolean
expression evaluates to the value TRUE. If the condition is false, then either no statement is to be executed,
or the statement group following the ELSE keyword (or the ELSIF keyword if its associated Boolean condition
is true) is executed.

 - CASE: the CASE statement consists of an expression which evaluates to a variable of type DINT (the “selec-
tor”), and a list of statement groups, each group being labeled by one or more integer or ranges of integer
values, as applicable. It specifies that the first group of statements, one of whose ranges contains the com-
puted value of the selector, is to be executed. If the value of the selector does not occur in a range of any
case, the statement sequence following the keyword ELSE (if it occurs in the CASE statement) is executed.
Otherwise, none of the statement sequences is executed.

PHC Studio does not set any constraint on the maximum allowed number of selections in CASE statements.

 D1WWTE04E 191

PHC Studio

Syntax
Note that square brackets include optional code, while braces include repeatable portions of code.

1) IF:

 IF expression1 THEN

 stat_list

 [{ ELSIF expression2 THEN

 stat_list }]

 ELSE

 stat_list

 END_IF ;
2) CASE:

 CASE expression1 OF

 intv [{, intv }] :

 stat_list

 { intv [{, intv }] :

 stat_list }

 [ELSE

 stat_list]

 END_CASE ;

 intv being either a constant or an interval: a or a..b

Examples
IF statement:

IF d 0.0 THEN

nRoots := 0 ;

ELSIF d = 0.0 THEN

nRoots := 1 ;

x1 := -b / (2.0 * a) ;

ELSE

nRoots := 2 ;

x1 := (-b + SQRT(d)) / (2.0 * a) ;

x2 := (-b - SQRT(d)) / (2.0 * a) ;

END_IF ;
CASE statement:

CASE tw OF

1, 5:

display := oven_temp ;

2:

display := motor_speed ;

3:

display := gross_tare;

4, 6..10:

display := status(tw - 4) ;

 D1WWTE04E192

PHC Studio

ELSE

 display := 0;

 tw_error := 1;

END_CASE ;

11.5.2.4 ITERATION STATEMENTS

Semantics
Iteration statements specify that the group of associated statements are executed repeatedly. The FOR state-
ment is used if the number of iterations can be determined in advance; otherwise, the WHILE or REPEAT con-
structs are used.

 - FOR: the FOR statement indicates that a statement sequence is repeatedly executed, up to the END_FOR key-
word, while a progression of values is assigned to the FOR loop control variable. The control variable, initial
value, and final value are expressions of the same integer type (e.g., SINT, INT, or DINT) and cannot be al-
tered by any of the repeated statements. The FOR statement increments the control variable up or down from
an initial value to a final value in increments determined by the value of an expression; this value defaults
to 1. The test for the termination condition is made at the beginning of each iteration, so that the statement
sequence is not executed if the initial value exceeds the final value.

 - WHILE: the WHILE statement causes the sequence of statements up to the END_WHILE keyword to be ex-
ecuted repeatedly until the associated Boolean expression is false. If the expression is initially false, then the
group of statements is not executed at all.

 - REPEAT: the REPEAT statement causes the sequence of statements up to the UNTIL keyword to be executed
repeatedly (and at least once) until the associated Boolean condition is true.

 - EXIT: the EXIT statement is used to terminate iterations before the termination condition is satisfied. When
the EXIT statement is located within nested iterative constructs, exit is from the innermost loop in which
the EXIT is located, that is, control passes to the next statement after the first loop terminator (END_FOR,
END_WHILE, or END_REPEAT) following the EXIT statement.

Note: the WHILE and REPEAT statements cannot be used to achieve interprocess synchronization,
for example as a “wait loop” with an externally determined termination condition. The SFC
elements defined must be used for this purpose.

Syntax
Note that square brackets include optional code, while braces include repeatable portions of code.

1) FOR:

 FOR control_var := init_val TO end_val [BY increm_val] DO

 stat_list

 END_FOR ;
2) WHILE:

 WHILE expression DO

 stat_list

 END_WHILE ;
3) REPEAT:

 REPEAT

 stat_list

 UNTIL expression

 END_REPEAT ;

 D1WWTE04E 193

PHC Studio

Examples
FOR statement:

j := 101 ;

FOR i := 1 TO 100 BY 2 DO

 IF arrvals[i] = 57 THEN

j := i ;

 EXIT ;

 END_IF ;

END_FOR ;
WHILE statement:

j := 1 ;

WHILE j <=100 AND arrvals[i] <> 57 DO

j := j + 2 ;

END_WHILE ;
REPEAT statement:

j := -1 ;

REPEAT

 j := j + 2 ;

UNTIL j = 101 AND arrvals[i] = 57

END_REPEAT ;

11.6 SEQUENTIAL FUNCTION CHART (SFC)

This section defines Sequential Function Chart (SFC) elements to structure the internal organization of a PLC
program organization unit (POU), written in one of the languages defined in this standard, for the purpose of
performing sequential control functions. The definitions in this section are derived from IEC 848, with the neces-
sary changes to convert the representations from a standard documentation to a set of execution control ele-
ments for a PLC program organization unit.

Since SFC elements require storage of state information, the only program organization units which can be
structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire program organization unit
is so partitioned. If no SFC partitioning is given for a program organization unit, the entire program organization
unit is considered to be a single action which executes under the control of the invoking entity.

SFC elements
The SFC elements provide a means of partitioning a PLC program organization unit into a set of steps and transi-
tions interconnected by directed links. Associated with each step is a set of actions, and with each transition is
associated a transition condition.

 D1WWTE04E194

PHC Studio

11.6.1 STEPS

11.6.1.1 DEFINITION

A step represents a situation where the behavior of a program organization unit (POU) with respect to its inputs
and outputs follows a set of rules defined by the associated actions of the step. A step is either active or inac-
tive. At any given moment, the state of the program organization unit is defined by the set of active steps and
the values of its internal and output variables.

A step is represented graphically by a block containing a step name in the form of an identifier. The directed
link(s) into the step can be represented graphically by a vertical line attached to the top of the step. The directed
link(s) out of the step can be represented by a vertical line attached to the bottom of the step.

Representation Description

Step
(graphical representation with direct

links)

PHC Studio does not set any constraint on the maximum number of steps per SFC.

Step flag
The step flag (active or inactive state of a step) can be represented by the logic value of a Boolean variable
***_x, where *** is the step name. This Boolean variable has the value TRUE when the corresponding step is
active, and FALSE when it is inactive. The scope of step names and step flags is local to the program organiza-
tion unit where the steps appear.

Representation Description

Step Name_x
Step flag

= TRUE when Step Name_x is active = FALSE
otherwise

Users cannot assign a value directly to a step state.

11.6.1.2 INITIAL STEP

The initial state of the program organization unit is represented by the initial values of its internal and output
variables, and by its set of initial steps, i.e., the steps which are initially active. Each SFC network, or its textual
equivalent, has exactly one initial step. An initial step can be drawn graphically with double lines for the borders,
as shown below. For system initialization, the default initial state is FALSE for ordinary steps and TRUE for initial
steps.

PHC Studio cannot compile an SFC network not containing exactly one initial step.

Representation Description

Initial step
(graphical representation with direct

links)

 D1WWTE04E 195

PHC Studio

11.6.1.3 ACTIONS

An action can be:

 - a collection of instructions in the IL language;

 - a collection of networks in the FBD language;

 - a collection of rungs in the LD language;

 - a collection of statements in the ST language;

 - a sequential function chart (SFC) organized as defined in this section.

Zero or more actions can be associated with each step. Actions are declared via one of the textual structuring
elements listed in the following table.

Structuring element Description

STEP StepName :
(* Step body *)

END_STEP
Step (textual form)

INITIAL_STEP StepName :
(* Step body *)

END_STEP
Initial step (textual form)

Such a structuring element exists in the lsc file for every step having at least one associated action.

11.6.1.4 ACTION QUALIFIERS

The time when an action associated to a step is executed depends on its action qualifier.

PHC Studio implements the following action qualifiers.

Qualifier Description Meaning

N Non-stored (null qualifier). The action is executed as long as the step
remains active.

P Pulse.
The action is executed only once per step
activation, regardless of the number of cycles
the step remains active.

If a step has zero associated actions, then it is considered as having a WAIT function, that is, waiting for a suc-
cessor transition condition to become true.

11.6.1.5 JUMPS

Direct links flow only downwards. Therefore, if you want to return to a upper step from a lower one, you can-
not draw a logical wire from the latter to the former. A special type of block exists, called Jump, which lets you
implement such a transition.

A Jump block is logically equivalent to a step, as they have to always be separated by a transition. The only ef-
fect of a Jump is to activate the step flag of the preceding step and to activate the flag of the step it points to.

Representation Description

Jump
(logical link to the destination step)

 D1WWTE04E196

PHC Studio

11.6.2 TRANSITIONS

11.6.2.1 DEFINITION

A transition represents the condition whereby control passes from one or more steps preceding the transition to
one or more successor steps along the corresponding directed link. The transition is represented by a small grey
square across the vertical directed link.

The direction of evolution following the directed links is from the bottom of the predecessor step(s) to the top
of the successor step(s).

11.6.2.2 TRANSITION CONDITION

Each transition has an associated transition condition which is the result of the evaluation of a single Boolean
expression. A transition condition which is always true is represented by the keyword TRUE, whereas a transition
condition always false is symbolized by the keyword FALSE.

A transition condition can be associated with a transition by one of the following means:

Representation Description

By placing the appropriate Boolean constant {TRUE, FALSE}
adjacent to the vertical directed link.

By declaring a Boolean variable, whose value determines whether
or not the transition is cleared.

By writing a piece of code, in any of the languages supported by
PHC Studio, except for SFC. The result of the evaluation of such a
code determines the transition condition.

The scope of a transition name is local to the program organization unit (POU) where the transition is located.

11.6.3 RULES OF EVOLUTION

Introduction
The initial situation of a SFC network is characterized by the initial step which is in the active state upon initiali-
zation of the program or function block containing the network.

Evolutions of the active states of steps take place along the directed links when caused by the clearing of one
or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding transition symbol by di-
rected links, are active. The clearing of a transition occurs when the transition is enabled and when the associ-
ated transition condition is true.

The clearing of a transition causes the deactivation (or “resetting”) of all the immediately preceding steps con-
nected to the corresponding transition symbol by directed links, followed by the activation of all the immediately
following steps.

The alternation Step/Transition and Transition/Step is always maintained in SFC element connections, that is:

 - two steps are never directly linked; they are always separated by a transition;

 - two transitions are never directly linked; they are always separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time, the sequences which
these steps belong to are called simultaneous sequences. After their simultaneous activation, the evolution of
each of these sequences becomes independent. In order to emphasize the special nature of such constructs, the
divergence and convergence of simultaneous sequences is indicated by a double horizontal line.

The clearing time of a transition may theoretically be considered as short as one may wish, but it can never be
zero. In practice, the clearing time will be imposed by the PLC implementation: several transitions which can
be cleared simultaneously will be cleared simultaneously, within the timing constraints of the particular PLC

 D1WWTE04E 197

PHC Studio

implementation and the priority constraints defined in the sequence evolution table. For the same reason, the
duration of a step activity can never be considered to be zero. Testing of the successor transition condition(s)
of an active step shall not be performed until the effects of the step activation have propagated throughout the
program organization unit where the step is declared.

 D1WWTE04E198

PHC Studio

Sequence evolution table
This table defines the syntax and semantics of the allowed combinations of steps and transitions.

Example Rule

Normal transition

An evolution from step S3 to step S4 takes place
if and only if step S3 is in the active state and
the transition condition c is TRUE.

Divergent transition

An evolution takes place from S5 to S6 if and
only if S5 is active and the transition condition e
is TRUE, or from S5 to S8 only if S5 is active and
f is TRUE and e is FALSE.

Convergent transition

An evolution takes place from S7 to S10 only
if S7 is active and the transition condition h is
TRUE, or from S9 to S10 only if S9 is active and
j is TRUE.

Simultaneous divergent transition

An evolution takes place from S11 to S12,
S14,... only if S11 is active and the transition
condition b associated to the common transition
is TRUE. After the simultaneous activation of
S12, S14, etc., the evolution of each sequence
proceeds independently.

Simultaneous convergent transition

An evolution takes place from S13, S15,... to
S16 only if all steps above and connected to
the double horizontal line are active and the
transition condition d associated to the common
transition is TRUE.

 D1WWTE04E 199

PHC Studio

Examples

Invalid scheme Equivalent allowed scheme Note

Expected behavior: an
evolution takes place from
S30 to S33 if a is FALSE and d
is TRUE.

The scheme in the leftmost
column is invalid because
conditions d and TRUE are
directly linked.

Expected behavior: an
evolution takes place from
S32 to S31 if c is FALSE and d
is TRUE.

The scheme in the
leftmost column is invalid
because direct links flow
only downwards. Upward
transitions can be performed
via jump blocks.

11.6.4 SFC CONTROL FLAGS

PHC Studio provides some control flags for SFC program or function blocks.

To enable this feature, please refer to paragraph 4.6.2.

Those flags are:

 - <POU name>_HOLD_SFC (type BOOL);

 - <POU name>_RESET_SFC (type BOOL).

Where <POU name> means the name of the SFC POU (program or function block).

For example, if the SFC POU is named Main, the control flags will be named Main_HOLD_SFC and Main_RE-
SET_SFC.

Another couple of actions is available for every SFC action, which also are contained in a SFC POU.

For example, if the above program Main contains a SFC action named Execute, the control flags of this action
will be Main_Execute_HOLD_SFC and Main_Execute_RESET_SFC.

These flags functionalities are described in details on next paragraphs.

 D1WWTE04E200

PHC Studio

11.6.4.1 HOLD FLAG

Following the main characteristics of the <POU name>_HOLD_SFC flag:

 - default value is FALSE;

 - when set to TRUE, the SFC block, which is referred to (the one with the same name as <POU name>), it is kept
in the current status (hold) and no code is executed;

 - when the flag is set back to FALSE, the SFC block execution is recovered from exactly the same point in which
was set to hold, trough <POU name>_HOLD_SFC := TRUE.

11.6.4.2 RESET FLAG

Following the main characteristics of the <POU name>_RESET_SFC flag:

 - default value is FALSE;

 - when set to TRUE, the SFC block, which is referred to (the one with the same name as <POU name>), it is
brought back to the initial state, that is the execution state of the init action.

 - this is an auto-reset flag, which means that if it is set to TRUE his own state becomes FALSE after his reset
action has been executed. It is therefore not necessary to bring the <POU name>_RESET_SFC value back to
FALSE.

11.6.4.3 FLAGS VISIBILITY

The <POU name>_HOLD_SFC and <POU name>_RESET_SFC flags are automatically generated from the code com-
piler and they belongs to the local variables of the POU which are referred to.

PHC Studio does not show this flags in the variables list of the POU; they are hidden but in any case they can
be used everywhere within the code.

11.6.5 CHECK A SFC POU FROM OTHER PROGRAMS

To allow the managing of a SFC POU from other programs PHC Studio provides the following functionalities:

 - The compiler automatically generates the <POU name>_RESET_SFC and <POU name>_HOLD_SFC flags.

 - If the SFC POU is a function block, the user has the possibility to declare, as VAR_INPUT and type BOOL, both
flags having the name of the SFC POU control flags.

 - If the SFC POU is a program, the user has the possibility to declare, as VAR_GLOBAL and type BOOL, both flags
having the name of the SFC POU control flags.

 - In both cases above, PHC Studio compiler will use the variables declared among the VAR_INPUT or VAR_GLOB-
AL ones and not those automatically generated (therefore they will be not generated).

Using these techniques, user then can manage the working state of the SFC POU from other POU using the IN-
PUT variables of the SFC POU.

 D1WWTE04E 201

PHC Studio

Example

FUNCTION_BLOCK test

 VAR_INPUT

 …

	 test_RESET_SFC	:	BOOL;	(*	Control	flag	explicitly	declared	*)

 END_VAR

…

END_FUNCTION_BLOCK

PROGRAM Main

 VAR

 …

 block : test; (* SFC block instance *)

 END_VAR

 …

 (* Reset SFC block state *)

 block.test_RESET_SFC := TRUE;

 …

END_PROGRAM

11.6.5.1 SFC MACRO LIBRARY

PHC Studio makes available to user a library, called SFCControl.pll, to allow the manage of the SFC states
trough commands instead of variable settings.

This library is composed by macros usable only in ST language.

11.6.5.2 USAGE EXAMPLE OF THE CONTROL FLAGS

Following are some example of control flags usage, assuming the SFC POU is named Main:

 - Hold (freeze):

 Main_HOLD_SFC := TRUE;
 - Restart from hold state:

 Main_HOLD_SFC := FALSE;
 - Restart form initial state of a SFC block in hold state:

 Main_RESET_SFC := TRUE;

 Main_HOLD_SFC := FALSE;
 - Reset to initial state and instant restart of SFC block:

 Main_RESET_SFC := TRUE; (* automatic reset from compiler *).

 D1WWTE04E202

PHC Studio

11.7 PHC STUDIO LANGUAGE EXTENSIONS

PHC Studio features a few extensions to the IEC 61131-3 standard, in order to further enrich the language and
to adapt to different coding styles.

11.7.1 MACROS

PHC Studio implements macros in the same way a C programming language pre-processor does.

Macros can be defined using the following syntax:

 MACRO <macro name>

 PAR_MACRO

 <parameter list>

 END_PAR

 <macro body>

 END_MACRO
Note that the parameter list may eventually be empty, thus distinguishing between object-like macros, which do
not take parameters, and function-like macros, which do take parameters.

A concrete example of macro definition is the following, which takes two bytes and composes a 16-bit word:

MACRO MAKEWORD

 PAR_MACRO

 lobyte;

 hibyte;

 END_PAR

 { CODE:ST }

 lobyte + SHL(TO_UINT(hibyte), 8)

END_MACRO
Whenever the macro name appears in the source code, it is replaced (along with the actual parameter list, in
case of function-like macros) with the macro body. For example, given the definition of the macro MAKEWORD and
the following Structured Text code fragment:

 w := MAKEWORD(b1, b2);
the macro pre-processor expands it to

 w := b1 + SHL(TO_UINT(b2), 8);

11.7.2 POINTERS

Pointers are a special kind of variables which act as a reference to another variable (the pointed variable). The
value of a pointer is, in fact, the address of the pointed variable; in order to access the data stored at the ad-
dress pointed to, pointers can be dereferenced.

Pointer declaration requires the same syntax used in variable declaration, where the type name is the type name
of the pointed variable preceded by a @ sign:

 VAR

 <pointer name> : @<pointed variable type name>;

 END_VAR
For example, the declaration of a pointer to a REAL variable shall be as follows:

 VAR

 px : @REAL;

 END_VAR

 D1WWTE04E 203

PHC Studio

A pointer can be assigned with another pointer or with an address. A special operator, ADR, is available to re-
trieve the address of a variable.

 px := py; (* px and py are pointers to REAL (that is, vari-
ables of type @REAL) *)

 px := ADR(x) (* x is a variable of type REAL *)

 px := ?x (* ? is an alternative notation for ADR *)
The @ operator is used to dereference a pointer, hence to access the pointed variable.

 px := ADR(x);

 @px := 3.141592; (* the approximate value of pi is assigned to x *)

 pn := ADR(n);

 n := @pn + 1; (* n is incremented by 1 *)
Beware that careless use of pointers is potentially dangerous: indeed, pointers can point to any arbitrary loca-
tion, which can cause undesirable effects.

11.7.3 WAITING STATEMENT

PHC Studio implements a WAITING statement that can be used in ST code as following example:

...

WAITING <condition> DO

 <code to be executed waiting for condition becomes true>

END_WAITING;

...

Until the condition is not verified, the code will be executed (not as in a loop cycle but returning to caller in every
execution).

The WAITING statement can be used only if the associated project option is enabled (see paragraph 4.6.2 for
more details).

 D1WWTE04E204

PHC Studio

12. ERRORS REFERENCE

12.1 COMPILE TIME ERROR MESSAGES

ERROR
CODE SHORT DESCRIPTION EXPLANATION

A4097 Object not found The object indicated (variable or function block) has not
been defined in the application.

A4098 Unsupported data type The size (in bits) requested by the indicated data type
isn't supported by the target system.

A4099 Auto vars space exhausted The total allocation space requested by all local variables
exceeds the space available on the target system.

A4100 Retentive vars space exhausted
The total allocation space requested by all local retentive
variables exceeds the space available on the target
system.

A4101 Bit vars space exhausted
The total allocation space requested by all local bit
(boolean) variables exceeds the space available on the
target system.

A4102 Invalid ++ in data block The variable indicated is associated with an index that is
not available in the relative data block.

A4103 Data block not found The variable indicated is associated with a data block
that doesn't exist (isn't defined) in the target system.

A4104 Code space exhausted
The total size of code used for POU (programs, functions
and function blocks) exceed the space available on the
target system.

A4105 Invalid bit offset The variable indicated is associated with a bit index that
is not available in the relative data block.

A4106 Image variable requested Error code superseded.

A4107 Target function not found The function indicated isn't available on the target
system.

A4108 Base object not found The indicated instance refers to a function block
definition non defined.

A4109 Invalid base object type The indicated variable is associated with a data type
(including function block definition) that isn't defined.

A4110 Invalid data type The data type used in the variable definition doesn't
exist.

A4111 Invalid operand type The operand type is not allowed for the current operator.

A4112 Function block shares global data
and is used by more tasks

The indicated function block is called by more than one
task but uses global variables with process image. For
this reason the compiler isn't able to refer to the proper
image variable for each instance of the function block.

A4113 Temporary variables allocation
error Internal compiler error.

A4114 Embedded functions do not
support arrays as input variables

A4115 Too many parameters input to
embedded function

A4116 Incremental build failed, perform
a full build command

 D1WWTE04E 205

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

A4117 Less then 10% of free data

A4118 Less then 10% of free retain data

A4119 Less then 10% of free bit data

A4120 Variable exceeds data block space

A4121 Element not found

A4123 Invalid access to private member

A4129 Not a structured type

A4130 Not a function block instance

A4131 Incompatible external declaration

A4133 Not a variable

A4134 Index exceeds array size

A4135 Invalid index data type

A4136 Missing index(es)

A4137 Function block instance required

A4138 Simple variable required

A4139 Too many indexes

A4140 Not a structure instance

A4141 Not an array

A4143 Not a pointer

A4144 Double pointer indirection not
allowed

A4145 To be implemented

A4146 Bit datatype not allowed

A4147 Unable to calculate variable offset

A4148 Complex variables cannot have
process image

A4149
Cannot use directly represented
variables with process image in
function blocks (not implemented)

A4150 Function block instance not
allowed

A4151 Structure not allowed

A4152 16-bit variables must be aligned
to a 16-bit boundary

A4153 32-bit variables must be aligned
to a 32-bit boundary

A4154
Temporary string variable
allocation error. Instruction shall
be split.

A4155 Ext/aux auto vars space
exhausted

A4156 Ambiguous enum value,
<enum># prefix required

B0001 Data block not found The variable indicated is associated with a data block
that doesn't exist (isn't defined) in the target system.

 D1WWTE04E206

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

B0002 Error on create file The indicated file can't be created due to a file system
error or to a missing source file.

C0001 Parser not initialized Internal compiler error.

C0002 Invalid token Invalid word for the current language syntax

C0003 Invalid file specification Internal compiler error.

C0004 Can't open file The indicated file can't be opened due to a file system
error or to a missing source file.

C0005 Parser table error Internal compiler error.

C0006 Parser non specified Internal compiler error.

C0007 Unexpected end of file The indicated file is truncated or the syntax is
incomplete.

C0009 Reserved keyword The indicated word can't be used for declaration
purposes because is a keyword of the language.

C0010 Invalid element The indicated word isn't a valid one for the language
syntax.

C0011 Aborted by user

C0032 Too many parameters in macro
call

C0033 Invalid number of parameters in
macro call

C0034 Too many macro calls nested

C4097 Invalid variable type The data type indicated isn't allowed.

C4098 Invalid location prefix The address string of the indicated variable isn't correct,
'%' missing.

C4099 Invalid location specification The address string of the indicated variable isn't correct,
the data access type indication isn't 'I', 'Q' or 'M'.

C4100 Invalid location type The address string of the indicated variable isn't correct,
the data type indication isn't 'X', 'B', 'W', 'D', 'R' or 'L'.

C4101 Invalid location index specification The address string of the indicated variable isn't correct,
the index isn't correct.

C4102 Duplicate variable name The name of the indicated variable has already been
used for some other project object.

C4103 Only 0 admitted here The compiler uses only arrays zero-index based

C4104 Invalid array dimension
The dimension of the array isn't indicated in the correct
way (e.g.: contains invalid characters, negative numbers
etc.).

C4105 Constant not initialized Every constant need to have an initial value.

C4106 Invalid string size

C4107 Initialization exceeding string size

C4108 Invalid repetition in initialization

C4109 Invalid data type for initialization

C4353 Duplicate label The indicated label has already been defined in the
current POU (program, function or function block).

C4354 Constant not admitted The operation indicated doesn't allow to use constants
(typically store or assign operations).

C4355 Address of explicit constant not
defined

 D1WWTE04E 207

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

C4356 Maximum number of subscripts
exceeded

C4358 Invalid array base

C4359 Invalid operand

C4609 Invalid binary constant A constant value with 2# prefix must contain only binary
digits (0 or 1).

C4610 Invalid octal constant A constant value with 8# prefix must contain only octal
digits (between 0 and 7).

C4611 Invalid hexadecimal constant
A constant value with 16# prefix must contain only
hexadecimal digits (between 0 and 9 and between A and
F).

C4612 Invalid decimal constant
A decimal constant must contain only digits between 0
and 9, a leading sign + or -, a decimal separator '.' Or a
exponent indicator 'e' or 'E'.

C4613 Invalid time constant
A constant value with t# prefix must contain a time
indication in decimal notation and a time unit between
'ms, 's' or 'm'.

C4614 Invalid constant string

C4864 Duplicate function name The indicated function name has already been used for
another application object.

C4865 Invalid function type The data type returned by the indicated function is not
correct.

C5120 Duplicate program name The indicated program name has already been used for
another application object.

C5376 Duplicate function block name The indicated function block name has already been
used for another application object.

C5632 Invalid pragma

C5633 Invalid pragma value

C5889 Duplicate macro name

C5890 Duplicate macro parameter name

C6144 Invalid resource definition: two or
more tasks have the same ID

C16385 Invalid init value

C16386 Invalid initialization definition

C16387 Invalid array delimiters (brackets)

C16388 Empty init value

C16389 Empty array init value

C16390 Invalid repeated init value

C16391 Not implemented

C16392 Missing array delimiters
(brackets)

C16393 Missing comma

C16394 Not implemented

C16395 Invalid (incomplete) string

 D1WWTE04E208

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

D12289 Can't allocate database

The memory space needed for parameter's database
exceeds the space available on the target system. If
possible, remove unused parameter's records, menus
etc.

D12290 Can't allocate database record

The memory space needed for parameter's database
exceeds the space available on the target system. If
possible, remove unused parameter's records, menus
etc.

D12291 Database variable not found Internal compiler error.

D12292 Invalid expression or expression
syntax error

The database expression that has the result indicated
isn't correct, contains syntax errors or invalid operators.

D12293 Invalid parameter reference in
expression

The database expression that has the result indicated
contains a parameter (as operand) that isn't the same to
which the expression refers to. The expression can use
only PLC variables (including the variables associated
with parameters) and the value of the parameter that
is exchanged at the moment. For example: pDELTA
= DELTA / pRATIO + pOFFSET is correct because
the parameter exchanged is DELTA and it's the only
parameter value used in the expression. The expression:
pDELTA = DELTA / pRATIO + OFFSET isn't correct
because the parameter OFFSET used in the expression
isn't currently exchanged

D12294 Recursive expression
The database expression that has the result indicated
calls itself by means of some operand used that contains
the current expression result.

D12295 Unresolved variable in expression
The database expression that has the result indicated
uses an operand that isn't defined in the whole PLC
project.

D12296 Unresolved expression result Internal compiler error.

D12297 Invalid result type for expression The parameter that is the result of the expression has a
data type invalid (such as enumerative) or not defined.

D12298 Invalid operand in expression The database expression that has the result indicated
uses an invalid operand.

D12299 Invalid variable type for
expression

The variable that is the result of the expression has a
data type invalid (such as enumerative) or not defined.

D12300 Assembler error Internal compiler error.

D12301 Can't allocate database code
The code space needed for the expression is exhausted.
Is necessary to remove some expressions from the
parameter's database.

D12302 Invalid operation in expression The database expression that has the result indicated
uses an invalid operand.

F1025 Invalid network
The indicated FBD or LD network contains a connection
error (the errors are normally indicated by red
connections).

F1026 Unconnected pin The indicated block (operator, function, contact or coil)
has an unconnected pin.

F1027 Invalid connection (incomplete,
more than a source etc.) Internal compiler error.

F1028 More than one network per block The network indicated contains more networks of blocks
and variables not connected between them.

 D1WWTE04E 209

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

F1029 Ambiguous network evaluation The compiler is not able to find an univocal way to
establish the order of blocks execution.

F1030 Temporary variables allocation
error Internal compiler error.

F1031 Inconsistent network The network indicated doesn't have input or output
variables.

F1032 Invalid object connected to power
rail

F1033
Invalid use of pin negation (ADR
operator does not allow negated
input

F1034
Invalid use of pin negation
(SIZEOF operator does not allow
negated input

G0001 Invalid operand number The number of operands is not correct for the operand or
the function indicated.

G0002 Variable not defined The variable has not been defined in the local or global
context.

G0003 Label not defined The label indicated for the JMP operand isn't defined in
the current POU (program, function or function block).

G0004 Function block not defined The indicated instance refers to a function block not
defined in the whole project.

G0005 Reference to object not defined The indicated instance refers to an object not defined in
the whole project.

G0006 Constant not admitted The operation indicated doesn't allow to use constants
(typically store or assign operations).

G0007 Code buffer overflow
The total size of code used for POU (programs, functions
and function blocks) exceed the space available on the
target system.

G0008 Invalid access to variable
The access made to the indicated variable is not allowed.
An attempt to write a read-only variable or to read a
write-only variable has been made.

G0009 Program not found The indicated program doesn't exist in the current
project.

G0010 Program already assigned to a
task

The indicated program has been assigned to more than
one task of the target system.

G0011 Can't allocate code buffer There isn't enough memory on the PC to create the
image of the code of the target system.

G0012 Function not defined The indicated function doesn't exist in the current
project.

G0013 Cyclic declaration of function
blocks

The indicated function block call itself directly or by
means of other functions.

G0014 Incompatible external declaration

The external variable declaration of the current function
block doesn't match with the global variable definition it
refers to (the one with the same name). Typically is the
case of a type mismatch.

G0015 Accumulator extension

G0016 External variable not found
The external variable doesn't refer to any of the global
variables of the project (e.g.: there isn't a global variable
with the same name).

 D1WWTE04E210

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G0017 Program is not assigned to a task The indicated program hasn't been assigned to a task in
the target system.

G0018 Task not found in resources The indicated task isn't defined in the target system.

G0019 No task defined for the application
There aren't task definitions for the target system. The
target definition file (*.TAR) is missing or incomplete.
Contact the target system vendor.

G0020 Far data allowed only for load/
store operations in PROGRAMs

Huge memory access isn't allowed for function blocks,
only for programs (error code valid only for some target
system with NEAR/FAR data access).

G0021 Invalid processor type The processor indicated into the target definition file
(*.TAR) isn't correct or isn't supported by the compiler.

G0022
Function block with process image
variables can't be used in event
tasks

G0023 Process image variables can't be
used in event tasks

G0024 Accumulator undefined

G0025 Invalid index

G0026 Only constant index allowed

G0027 Illegal reference to the address of
a register

G0028 Less then 10% of free code

G0029 Index exceeds array size

G0030 Access to array as scalar -
assuming index 0

G0031 Number of indexes not matching
the var size

G0032 Multidimensional variables not
supported

G0033 Invalid data type

G0034 Invalid operand type

G0035 Assembler error

G0036 Aborted by user

G0037 Element not defined

G0038 Cyclic declaration of structures

G0039 Cyclic declaration of typedefs

G0040 Unresolved definition of typedef

G0041 Exceeding dimensions in typedef

G0042 Unable to allocate compiler
internal data

G0043 CODE GENERATOR INTERNAL
ERROR

G0044 Real data not supported

G0045 Long real data not supported

G0046 Long data not supported

 D1WWTE04E 211

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G0047 Operation not implemented

G0048 Invalid operator

G0049 Invalid operator value

G0050 Unbalanced parentheses

G0051 Data conversion

G0052 To be implemented

G0053 Invalid index data type

G0054 Negation without condition

G0055 Operation not allowed on boolean

G0056 Negation of a non-boolean
operand

G0057 Boolean operand required

G0058 Floating point parameter not
allowed

G0059 Operand extension

G0060 Division by zero

G0061 Illegal comparison

G0062 Function block must be
instanciated

G0063 String operand not allowed

G0064 Operation not allowed on pointers

G0065 Destination may be too small to
store current result

G0066

Cannot use a function block
containing external variables with
process image in more than one
task

G0067 Cannot load the address of an
explicit constant

G0068 Writing a real value into an
integer variable

G0069 Cannot use complex variables in
functions. Not implemented

G0070 Signed/unsigned mismatch

G0071 Conversion data types mismatch,
possible loss of data

G0072 Implicit type conversion of
boolean to integer

G0073 Implicit type conversion of
boolean to real

G0074 Implicit type conversion of integer
to boolean

G0075 Implicit type conversion of integer
to boolean

G0076 Implicit type conversion of real to
boolean

 D1WWTE04E212

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G0077 Implicit type conversion of real to
integer

G0078 Arithmetic operations require
numerical operands

G0079 Bitwise logical operations require
bitstring/integer operands

G0080
Comparison operations require
elementary (i.e., not user-
defined) operands

G0081 Cannot take the address of a bit
variable

G0082 Writing a signed value into an
unsigned variable

G0083 Writing an unsigned value into a
signed variable

G0084 Implicit conversion from single to
double precision

G0085 Implicit conversion from double to
single precision

G0086 Function parameter extension

G0087 Casting to the same type has no
effects

G0088 Function parameters wrong
number

G0089 Embedded target function not
found

G0090 Recursive type declaration

G0091 Wrong initial value. Signed/
unsigned mismatch

G0092
Wrong initial value. Conversion
data types mismatch, possible
loss of data

G0093 String will be truncated

G0094 Init value type mismatch

G0095 Improper init value

G0096 Init value object not found

G0097 Invalid assignment to pointer

G0513 Invalid operator The operator indicated is not allowed for the indicated
operation.

G0514 Operation not implemented The operator indicated isn't supported by the current
target system.

G0515 Real data not supported The target system in use doesn't support floating point
operations.

 D1WWTE04E 213

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G0516 Destination may be too small to
store current result

The variable destination of the store/assignment
operation has a data type smaller than the one of the
accumulator. Data may be lost in the operation. For
example, if the accumulator contains 340 and the
destination operand is of SINT type, the assignment
operation will loose data. If the operation is under the
programmer's control an appropriate type conversion
function (TO_SINT, TO_INT, TO_DINT etc.) can be used
to eliminate the warning message.

G0517 Long data not supported The target system in use doesn't support long data
operations.

G0518 Accumulator extension

The variable destination of the store/assignment
operation has a data type bigger than the one of the
accumulator. An extension operation has been performed
automatically by the compiler. To eliminate this warning
message use the appropriate type conversion function
(TO_SINT, TO_INT, TO_DINT etc.).

G0519 Assembler error Internal compiler error.

G0520 Negation allowed only on boolean
The 'N' modifier used for some IL operators (LDN, STN,
ANDN etc.) can't be used with operators having type
other than boolean.

G0521 Operation allowed with boolean
types

The IL operator indicated (typically 'S' or 'R') can't be
used when the accumulator has a type other than BOOL.

G0522 Instruction has constant result The indicated operation has a result that is constant (ex.
multiply by 0, AND with FALSE).

G0523 Instruction is a NOP The operation indicated has no influence on the value of
the accumulator (ex. multiply by 1, AND with TRUE).

G0524 Unbalanced parentheses
The number of opened parentheses doesn't match with
the number of the closed parentheses in the indicated
code block.

G0525 Operation not allowed on boolean The indicated operation can't be performed on boolean
operands (ex. the arithmetic operations).

G0526 Can't perform modulo with long
values

The current target system doesn't allow the modulo
operation with long data types.

G0527 Division by 0 The indicated division operation has the constant value 0
as denominator.

G0528 Negation without condition

The indicated operation (JMP or RET) has the negation
modifier 'N' without the conditional evaluation modifier
'C'. Use JMPCN instead of JMPN or RETCN instead of
RETN.

G0529 Initial value not defined Internal compiler error.

G0530 Invalid initial value The initial value of the variable isn't indicated correctly.

G0531 Invalid accumulator type
The accumulator has a data type not allowed for the
indicated operation (ex. MUX operator with REAL
accumulator).

G0532 Code generator internal error Internal compiler error.

G0533 Invalid operator value The operator has a value not acceptable for the indicated
operation (ex. SHL with constant value bigger than 32).

G0534 Accumulator undefined The operation is performed without a previously loaded
value into the accumulator.

 D1WWTE04E214

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G0535 Invalid index
The constant index value used in the indicated
expression is too big for the array dimension. See the
array declaration string.

G0536 Only constant index allowed
The use of variable as index for the indicated array is not
supported by the compiler. This error is typically issued
with boolean (bit) arrays.

G0537 Indexing of boolean constants not
allowed

The use of variable as index for the indicated array is not
supported by the compiler. This error is typically issued
with boolean (bit) arrays.

G0538 Return not allowed from programs The RET operator isn't allowed in PROGRAM blocks.

G0539 Function block must be
instantiated

A function block can't be invoked directly with a CAL
instruction. It must be instantiated before its use eg.
must be a variable with data type corresponding to the
function block instead.

G0540 Operation not allowed with real
types

The indicated operation can't be executed on REAL data
types. Instructions of this kind are logical and bitwise
operations.

G0541 Accumulator conversion

This warning informs that the data type of the
accumulator has been automatically converted by the
compiler. This operation is typically executed when
the accumulator and the operand used in a arithmetic
operation have different data types.

G0542 Real accumulator must be
reloaded

Some target-specific implementations with software
floating point emulation require that each store
operation shall be preceded by a new load operation or a
arithmetic sequence.

G0543 Real accumulator not stored

Some target-specific implementations with software
floating point emulation require that when the floating
point stack has been loaded, the same shall be unloaded
at the end of arithmetic sequence.

G0544 Long real data not supported The long real data type LREAL isn't supported by the
compiler.

G0769 Invalid operator The operator indicated is not allowed for the indicated
operation.

G0770 Operation not implemented The operator indicated isn't supported by the current
target system.

G0771 Assembler error Internal compiler error.

G0772 Long real data not supported The long real data type LREAL isn't supported by the
compiler.

G0773 Long data not supported The long data type LINT isn't supported by the compiler.

G0774 Negation of a non-boolean
parameter

The negation modifier 'N' can't be used in operations
with data types different than boolean.

G0775 Operation not allowed on boolean The indicated operation can't be performed on boolean
operands (ex. the arithmetic operations).

G0776 Accumulator extension

The variable destination of the store/assignment
operation has a data type bigger than the one of the
accumulator. An extension operation has been performed
automatically by the compiler. To eliminate this warning
message use the appropriate type conversion function
(TO_SINT, TO_INT, TO_DINT etc.).

G0777 Accumulator undefined The operation is performed without a previously loaded
value into the accumulator.

 D1WWTE04E 215

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G0778 Destination may be too small to
store current result

The variable destination of the store/assignment
operation has a data type smaller than the one of the
accumulator. Data may be lost in the operation. For
example, if the accumulator contains 340 and the
destination operand is of SINT type, the assignment
operation will loose data. If the operation is under the
programmer's control an appropriate type conversion
function (TO_SINT, TO_INT, TO_DINT etc.) can be used
to eliminate the warning message.

G0779 Division by zero The indicated division operation has the constant value 0
as denominator.

G0780 Operation allowed on real
parameters only

The indicated operation can't be executed on REAL data
types. Instructions of this kind are logical and bitwise
operations.

G0781 Illegal comparison The indicated comparison operation is executed between
non homogeneous data types.

G0782 Negation without condition

The indicated operation (JMP or RET) has the negation
modifier 'N' without the conditional evaluation modifier
'C'. Use JMPCN instead of JMPN or RETCN instead of
RETN.

G0783 Boolean parameter required The IL operator indicated (typically 'S' or 'R') can't be
used when the accumulator has a type other than BOOL.

G0784 Operand extension

The data type of the operand has been extended to
the data type of the accumulator. Then the operation is
executed. The operand extension take place whenever
the operand data type is smaller than the accumulator
data type.

G0785 Does not support float
accumulator

The accumulator has REAL data type and it's not allowed
for the indicated operation (typically MUX operation).

G0786 Does not support boolean
accumulator

The accumulator has boolean data type and isn't allowed
for the indicated operation (ex. MUX operator).

G0787 Comparison of unsigned type and
signed type

The compare operation indicated is performed using
operators that have signed and unsigned data type.
Undesired or uncontrolled result may be possible.

G0788 Illegal conversion Internal compiler error.

G0789 Conversion may result in loss or
corruption of data Error code not used.

G0790 Illegal negation of a real
parameter Error code not used.

G0791 Writing a real value into an
integer var / param

The parameter passed to the function is of REAL type
instead of an integer data type as required by the
function input variables definition.

G0792 Writing an integer value into a
real var / param

The parameter passed to the function is of an integer
data type instead of the REAL type as required by the
function input variables definition.

G0793 Writing a signed value into an
unsigned var / param

The assignment operation is performed on an unsigned
data type variable but the accumulator data type has a
signed data type. Undesired result may be possible.

G0794 Writing an unsigned value into a
signed var / param

The assignment operation is performed on an unsigned
data type variable but the accumulator data type has a
signed data type. Undesired result may be possible.

 D1WWTE04E216

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G0795 Unbalanced parentheses
The number of opened parentheses doesn't match with
the number of the closed parentheses in the indicated
code block.

G0796 Error while extending parameters Internal compiler error.

G0797 Invalid index
The constant index value used in the indicated
expression is too big for the array dimension. See the
array declaration string.

G0798 Using a boolean index to access
an element of array

The indicated array access is incorrect because the index
variable used has a boolean data type.

G0799 Return not allowed from programs The RET operator isn't allowed in PROGRAM blocks.

G0800 Boolean accumulator required The indicated SEL operator requires that the accumulator
has the boolean data type.

G0801 Operators have mismatching type
The selection performed by MUX and SEL operators shall
be done between elements that have homogeneous data
types.

G0802 Function block must be
instantiated

A function block can't be invoked directly with a CAL
instruction. It must be instantiated before its use eg.
must be a variable with data type corresponding to the
function block instead.

G1537 Using a boolean index to access
an element of array

G1538 Does not support boolean
accumulator

G1539 Does not support float
accumulator

G1540 Error while extending operand(s)

G1541 Writing a signed value into an
unsigned variable

G1542 Writing an unsigned value into a
signed variable

G1543 Writing a real value into an
integer variable

G1544 Writing an integer value into a
real variable

G1545 Converting a string into a number

G1546 Converting a number into a string

G1547 FPU stack full

G1548 FPU stack empty

G1549 FPU stack size error

G1550 Illegal access to variable through
function

G1551
Illegal reference to address
of variable accessible through
function

G1552 Invalid access through function

G1553 Two variables with the same
handle

G1554 Invalid index for variable
accessible through function

 D1WWTE04E 217

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

G1555 Invalid instruction with non-empty
FPU stack

G1556 Function result of type string
requires store to variable

G8193 Type definition of unknown data
type

G8194 Type definition has exceeding
array dimensions

G8195 Cyclic definition of data type

G8196 Double pointers are not supported

G8197 No enumerative elements

G8199 Invalid or undefined initialization
constant

G10241 Too many initializers for variable

G10242 Too less initializers for variable

G10243 Constant without init values

P2048 Can't open parameters file
The source file for parameters (with PPC extension) can't
be opened because of is missing or is locked by the PC's
file system.

P2049 Symbol table file not created
The symbol allocation file (with SYM extension) can't be
written because of disk write protection or insufficient
disk space.

P2050 Can't create parameters file
The parameters file (with PAR extension) can't be
written because of disk write protection or insufficient
disk space.

P2051 Can't create directory

The directory for the new project can't be created. The
problem arises when there is a disk write protection or
when the new directory indicated for the project is more
than one level deep form an existing disk directory. The
compiler creates only one new directory level (the one
with the name of the project) starting from an existing
directory.

P2052 Can't open source project
The source project indicated for creating the new project
doesn't exist, is incomplete or is locked by the file
system.

P2053 Save project error
The new project can't be saved due to disk write
protection, non existing destination directory or file
system lock.

P2054 Generic file error A non specific error occurred during file operations.

P2055 Can't copy file
The indicated file can't be copied because of missing
source file, disk write protection or destination file
existing and protected.

P2056 Can't save file The indicated file can't be saved because of disk write
protection or destination file existing and protected.

P2057 Object already exist in project

The indicated object (variable, function, function block or
program) is contained in the last loaded library but there
is already another object with the same name in the
current project.

 D1WWTE04E218

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

P2058 Can't open library file The indicated library file doesn't exits or can't be opened
due to file system locking.

P2059 Listing file not created

P2060 Cannot create PLC application
binary file

P2061 Can't open template project

P2062 Support for processor isn't
available

P2063 Less than 10% of free code

P2064 Less than 10% of free data

P2065 Less than 10% of free retain data

P2066 Less than 10% of free bit data

P2067 Task not found in resources

P2068 No task defined for the application

P2069
Project is in the old PPJ format.
It will be saved in the actual PPJX
format

P2070 Can't open auxiliary source file

P2071 Can't read file

P2072

Application name is longer than
10 characters: only the first 10
characters will be downloaded into
the target

P2073 Downloadable source code file is
not password-protected

P2074 Downloadable PLC application
binary file not created

P2075 Less than 10% of free ext/aux
data

P2076

Project private copy of this
library was missing and has been
replaced with a new copy of the
library (from the original path)

P2077

Cannot load library! Project
private copy of this library was
missing and the original path to
the library is invalid: library has
been dropped

P2078 PLC variables export file not
created

P2079
Debug symbols package (for
following download to the target
device) not created

P2080
Source code package (for
following download to the target
device) not created

P2081 Invalid task definition

 D1WWTE04E 219

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

P2083 Invalid or incoherent task period

P2084 Broken library link

S1281 Generic ST error

S1282 Too many expressions nested

S1283 No iteration to exit from

S1284 Missing END_IF

S1285 Invalid ST statement

S1286 Invalid assignment

S1287 Missing;

S1288 Invalid expression

S1289 Invalid expression or missing DO

S1290 Missing END_WHILE

S1291 Missing END_FOR

S1292 Missing END_REPEAT

S1293 Invalid expression or missing
THEN

S1294 Invalid expression or missing TO

S1295 Invalid expression or missing BY

S1296 Invalid statement or missing
UNTIL

S1297 Invalid assignment, := expected

S1298 Invalid address expression

S1299 Invalid size expression

S1300 Function return value ignored

S1301 Invalid parameter passing

S1302 Function parameter not defined

S1303 Useless expression

S1304 Unbalanced parentheses

S1305 Unknown function

S1306 Invalid function parameter(s)
specification

S1307 Function parameter doesn't exist

S1308 Multiple assignment not allowed
(in accordance with IEC 61131-3)

S1309 ST preprocessor buffer overflow

S1310 Function block invocation of a
non-function block instance

S1311 Missing END_WAITING

S1312 Syntax error

S1537 Generic SFC error

S1538 Initial step missing

S1539 Output connection missing

 D1WWTE04E220

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

S1540 The output pin must be connected
to a transition

S1541
Every output pin of a transition
must be connected to a step/jump
block

S1542 Transition expected

S1543 Step or jump expected

S1544 Could not find the associate
program code

S1545 Could not find the condition code

S1546 Unknown-type transition

S1547 Invalid destination

S1548
Duplicates action. Same SFC
action cannot be used in more
than one step

T8193 Communication timeout

The communication with the target system failed
because there is non answer from the system itself.
More common causes of this problem are wrong cable
connection, invalid target address in communication
settings, invalid settings of communication parameters
(such as baud rate), target system failure.

T8194 Incompatible target version Error code not used.

T8195 Invalid code file

The target system image file (with IMG extension)
is invalid or corrupted. Try to upload and create new
version of the image file using the "Communication
Upload image file" menu option.

T8196 Invalid data block index

The image file (with IMG extension) contains a data
block that has an index greater than the largest index
supported by the target system. Try to upload and create
new version of the image file using the "Communication
Upload image file" menu option. If the problem persist,
contact the target system vendor.

T8197 Invalid target information address Internal compiler error.

T8198 Flash erase failure
The target system was not able to complete the flash
erasure procedure. Contact the target system vendor for
details.

T8199 Code write failure
The target system was not able to complete the flash
programming procedure. Contact the target system
vendor for details.

T8200 Communication device unavailable

The compiler tried to communicate with the target
system but the communication channel is not available.
If the problem persist and there are other applications
that communicate with the target system, deactivate the
communication on the other applications and try again.

T8201 Invalid function index Internal compiler error.

T8202 Invalid database information
address

The address of the parameter's database memory area
of the target system isn't correct or valid. Try to upload
and create new version of the image file using the
"Communication Upload image file" menu option.

T8203 Invalid target information

 D1WWTE04E 221

PHC Studio

ERROR
CODE SHORT DESCRIPTION EXPLANATION

T8204 Rebuild required

T8205 Invalid task

T8206

Application-level communication
protocol error: PLC run-time
was not able to understand the
received command

T8207 Not implemented

T8209 No room for source file on the
target

T8210 Error while uploading source code
from target device

T8211 No room for debug symbols on
the target

T8212 Memory read error

T8213 Memory write error

T8214
Not enough space available on
the target device for the PLC
application binary

 D1WWTE04E222

PHC Studio

223D1WWTE01E

___Notes

WWW.WALVOIL.COM1st edition August 2015

D1WWTE04E

