o walvoil

'PHC '

SI'I_JDID‘

o walvoil

WARNING

The User is required to properly verify and test that the Software is correctly working within the
specific scope of its application and under the actual configuration of the operating system in use.
The Software will perform in substantial conformance with the documentation supplied with the
Software when used with the indicated hardware and operating system configuration.

The User is required to verify the accuracy of the installation of the libraries on the control units
programmed with the Software and the reliability of their operating system. The manufacturer and/or
the distributor is not liable for: (i) the incorrect installation of the libraries on the control units, as well
as (ii) an installation which is not conforming with the requirements of the control units, and (iii) any
other deviations from the recommended use of the Software and of the operating system, including
but not limited to virus, third parties installations, and any other modifications affecting the correct
and recommended use of the Software.

The SOFTWARE is provided "AS IS" WITHOUT WARRANTY OF ANY KIND EITHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE other than those expressly provided under proper
installation by a proper experienced User. ALL RISKS OF QUALITY AND PERFORMANCE OF THE
outcome of the SOFTWARE REMAIN WITH the User.

The User is solely responsible for programming the control units through the use of the libraries and
is required to verify the compliance with any possible limitation in the use of the devices in which the
libraries are installed.

IN NO EVENT will the manufacturer, its employees, distributors, directors or agents be liable for any
direct or indirect damage or other liability arising from the use or inability to use the Software,
INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF BUSINESS OR OPPORTUNITY OR ANY
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL OR EXEMPLARY DAMAGES, INCLUDING LEGAL
FEES, ARISING FROM SUCH USE OR INABILITY TO USE THE PROGRAM, EVEN IF the manufacturer or
an authorized licensor dealer, distributor or supplier has been advised of the possibility of such
damages, or for any claim by any other party. Since SOME STATES OR JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR THE LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, IN SUCH STATES OR JURISDICTIONS, the manufacturer’s and/or distributor’s LIABILITY
SHALL BE LIMITED TO THE EXTENT PERMITTED BY LAW.

Additional information
This catalogue shows the product in the standard configurations.
Please contact our Sales Dpt. for more detailed information or special requests.

WARNING!

All specifications of this catalogue refer to the standard product at this date.
Walvoil, oriented to a continuous improvement, reserves the right to
discontinue, modify or revise the specifications, without notice.

WALVOIL IS NOT RESPONSIBLE FOR ANY DAMAGE CAUSED BY AN
INCORRECT USE OF THE PRODUCT. 2 edition May 2021

(]
1 | e uwalvoil D1WWTEO6E

nnnnnnnnnnn IMoaTion

PHC STUDIO

Contents
1. Introduction 1
1.1 Conventions used in this document 1
2. Overview 3
2.1 The workspace 3
2.1.1 The output window 4
2.1.2 The status bar 4
2.1.3 The document bar 4
2.1.4 The watch window 5
2.1.5 The library window 5
2.1.6 The workspace window 6
2.1.7 The source code editors 7
3. Using the environment 9
3.1 Layout customization 9
3.2 Toolbars 9
3.2.1 Showing/hiding toolbars 9
3.2.2 Moving toolbars 9
3.3 Docking windows 10
3.3.1 Showing/hiding tool windows 10
3.3.2 Floating tool windows 10
3.3.3 Docking tool windows 10
3.3.4 Auto-Hide tool windows 11
3.4 Working with windows 11
3.4.1 The document bar 11
3.4.2 The window menu 12
3.5 Full screen mode 12
3.6 Environment options 12
3.6.1 General 12
3.6.2 Graphic Editor 13
3.6.3 Text Editors 13
3.6.4 Language 13
3.6.5 Tools 14
3.6.6 Merge 16
4. Managing projects 17
4.1 Creating a new project 17
4.2 Uploading the project from the target device 17

[]
D1WWTEO6E o walvoil o«

nnnnnnnnnnn |IMoTion

PHC STUDIO

4.3

4.3.1
4.3.2
4.3.3
4.3.4

4.4
4.4.1
4.4.2
4.4.3

4.5

4.6

4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6

4.7

4.8

4.8.1
4.8.2
4.8.3
4.8.4

5.1

5.1.1
5.1.2
5.1.3

5.2

5.2.1
5.2.2
5.2.3

5.3
5.3.1
5.3.2

5.4
5.4.1
5.4.2

Saving the project
Persisting changes to the project
Saving to an alternative location
Autosave

Backup Copies

Managing existing projects
Opening an existing LogicLab project
Editing the project
Closing the project

Distributing projects

Project options
Project info

Code generation
Build output
Download

Debug

Build events
Selecting the target device

Working with libraries

The library manager

Exporting to a library

Importing from a library or another source

Updating existing libraries
Managing project elements

Program Organization Units
Creating a new Program Organization Unit
Editing POUs

Source code encryption/DECRYPTION

Variables
Global variables
Local variables

Creating multiple

Tasks
Assigning a program to a task

Task configuration

Derived data types
Typedefs

Structures

18
18
18
18
19

19
19
19
20

20

20
21
21
22
23
23
24

24

25
25
26
27
28

29

29
29
30
30

31
31
34
34

35
35
36

36
36
37

v e>walvoil

uuuuuuuuu

R ElMOTiON

D1WWTEOG6E

PHC STUDIO

5.4.3 Enumerations 38
5.4.4 Subranges 39
5.5 Browse the project 41
5.5.1 Object Browser 41
5.5.2 Search with the Find in project command 47
5.6 Working with LogicLab extensions 49
5.7 Project Custom Workspace 50
5.7.1 Enable The Custom Workspace Into An Existing Project 50
5.7.2 Workspaces Migration 50
5.7.3 Custom Workspace Basic Units 51
5.7.4 Custom Workspace Operations 51
5.7.5 Workspace Elements With Limitations 52
6. Editing the source code 53
6.1 Instruction List (IL) editor 53
6.1.1 Editing functions 53
6.1.2 Reference to PLC objects 53
6.1.3 Automatic error location 54
6.1.4 Bookmarks 54
6.2 Structured Text (ST) Editor 54
6.2.1 Creating and editing ST objects 54
6.2.2 Editing functions 54
6.2.3 Reference to PLC objects 55
6.2.4 Automatic error location 55
6.2.5 Bookmarks 55
6.3 Ladder Diagram (LD) editor 56
6.3.1 Creating a new LD document 56
6.3.2 Adding/Removing networks 56
6.3.3 Labeling networks 57
6.3.4 Inserting contacts 57
6.3.5 Inserting coils 58
6.3.6 Inserting blocks 58
6.3.7 Editing coils and contacts properties 59
6.3.8 Editing networks 59
6.3.9 Modifying properties of blocks 59
6.3.10 Getting information on a block 60
6.3.11 Automatic error retrieval 60
6.3.12 Inserting variables 60
6.3.13 Inserting constants 60
6.3.14 Inserting expression 60

D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

6.3.15
6.3.16

6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8

6.5

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

6.6

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6

7.

7.1
7.1.1

7.2
7.2.1

7.3
8.

8.1
8.1.1

8.2
8.2.1

Comments

Branches

Function Block Diagram (FBD) editor
Creating a new FBD document

Adding/Removing networks

Labeling networks

Inserting and connecting blocks

Editing networks

Modifying properties of blocks

Getting information on a block

Automatic error retrieval

Sequential Function Chart (SFC) Editor

Creating a new SFC document
Inserting a new SFC element
Connecting SFC elements

Assigning an action to a step

Specifying a constant/a variable as the condition of a transition

Assigning conditional code to a transition
Specifying the destination of a jump

Editing SFC networks

Variables editor
Opening a variables editor
Creating a new variable
Editing variables

Deleting variables

Sorting variables

Copying variables
Compiling
Compiling the project

Image file loading

Compiler output

Compiler errors
Command-line compiler
Launching the application

Setting up the communication

Saving the last used communication port

On-line status

Connection status

61
61

62
62
62
63
63
64
64
64
65

65
65
65
65
65
67
67
69
69

69
70
71
71
73
73
74

75

75
75

75
76

78
79

79
81

81
81

v e»>walvoil

uuuuuuuuuu

ElMoTioN

D1WWTEOG6E

PHC STUDIO

8.2.2

8.3
8.3.1

8.4

8.5

8.5.1
8.5.2
8.5.3
8.5.4
8.5.5

9.1

9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7

9.2

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7

9.3

9.4

9.4.1
9.4.2
9.4.3
9.4.4

9.5
9.5.1
9.5.2

9.6
9.6.1

Application status

Downloading the application

Controlling source code download
Simulation

Control the PLC execution
Halt

Cold restart

Warm restart

Hot restart

Reboot target
Debugging

Watch window

Opening and closing the watch window
Adding items to the watch window
Removing a variable

Refreshment of values

Changing the format of data

Working with watch lists

Autosave watch list

Oscilloscope

Opening and closing the oscilloscope
Adding items to the oscilloscope
Removing a variable

Variables sampling

Controlling data acquisition and display
Changing the polling rate

Saving and printing the graph

Edit and debug mode
Live debug

SFC animation
LD animation
FBD animation

IL and ST animation

Triggers
Trigger window

Debugging with trigger windows

Graphic triggers

Graphic trigger window

81

82
82

85

85
85
85
85
85
85

87

87
87
87
90
91
92
92
94

94
95
95
98
98
98
105
105

107

107
107
108
108
109

109
109
115

125
125

D1WWTEOG6E

o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

9.6.2
10.

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
10.1.9
10.1.10
10.1.11
10.1.12

10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7

11.

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7

11.2
11.2.1
11.2.2
11.2.3

11.3
11.3.1
11.3.2

Debugging with the graphic trigger window

LogicLab reference

Menus reference
File menu

Edit menu

View menu

Project menu
Online Menu
Debug menu
Scheme FBD menu
Scheme LD menu
Scheme SFC menu
Variables menu
Window menu

Help menu

Toolbars reference
Main toolbar

FBD toolbar

LD toolbar

SFC toolbar

Project toolbar

Network toolbar

Debug toolbar
Language reference

Common elements
Basic elements

Elementary data types
Derived data types

Literals

Variables

Program Organization Units

IEC 61131-3 standard functions

Instruction List (IL)
Syntax and semantics

Standard operators

Calling Functions and Function blocks

Function Block Diagram (FBD)

Representation of lines and blocks

Direction of flow in networks

131
141

141
141
142
143
144
145
146
147
149
151
152
152
152

153
153
153
153
153
153
153
153

155

155
155
155
156
158
159
162
165

179
179
180
181

182
182
182

vin @ uwalvoil

uuuuuuuuuu

ElMoTioN

D1WWTEOG6E

PHC STUDIO

11.3.3
11.3.4

11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.4.5

11.5
11.5.1
11.5.2

11.6
11.6.1
11.6.2
11.6.3
11.6.4
11.6.5

11.7
11.7.1
11.7.2
11.7.3

12,
12.1

Evaluation of networks

Execution control elements

Ladder Diagram (LD)
Power rails

Link elements and states
Contacts

Coils

Operators, functions and function blocks

Structured Text (ST)

Expressions

Statements in ST

Sequential Function Chart (SFC)
Steps

Transitions

Rules of evolution

SFC control flags

Check a SFC POU from other programs

LogicLab Language Extensions
Macros
Pointers

Waiting statement
Errors Reference

Compile time error messages

182
184

185
185
186
186
187
188

188
188
189

194
195
197
197
200
201

203
203
203
204

205
205

D1WWTEOG6E

o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

1. INTRODUCTION

1.1 CONVENTIONS USED IN THIS DOCUMENT

Text Type | Description

Command, Key Name of the command or keyboard shortcuts key.
Code : Source code text.
| d [Context menu] .Toolbar icon and context menu voice.
| [Context menu] .Context menu voice without any icon.
: For menu items hierarchy, the “>" symbol is used. A
Menu>Item record File>Open Project is equivalent to “the Open

Project item under the File menu”.

Same as above including the icon shown in the

L4 Menu>Item toolbar.

(see Paragraph)

(see Chapter) Link to related subject within this guide.

Terminology Important term or concept.

D1WWTEO6E o walvoil

sssssssssss [MoTian

PHC STUDIO

: e>walvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

2. OVERVIEW

PHC Studio is an IEC61131-3 Integrated Development Environment supporting the whole range of languages
defined in the standard.

In order to support the user in all the activities involved in the development of an application, PHC Studio in-
cludes:

- textual source code editors for the Instruction List (briefly, IL) and Structured Text (briefly, ST) programming
languages (see Chapter 6.);

- graphical source code editors for the Ladder Diagram (briefly, LD), Function Block Diagram (briefly, FBD), and
Sequential Function Chart (briefly, SFC) programming languages (see Chapter 6.);

- a compiler, which translates applications written according to the IEC standard directly into machine code,
avoiding the need for a run-time interpreter, thus making the program execution as fast as possible (see
Chapter 7);

- a communication system which allows the download of the application to the target environment (see Chapter
8);

- a rich set of debugging tools, ranging from an easy-to-use watch window to more powerful tools, which allows
the sampling of fast changing data directly on the target environment, ensuring the information is accurate
and reliable (see Chapter 9).

2.1 THE WORKSPACE

The figure below shows a view of PHC Studio’s workspace, including many of its more commonly used compo-
nents.

Ete Edit View Poject On-liwe Debug Scheme Variables Wndow Iocs Developer Help

AER e - ihB AL NESR CNRESCO @ B snoomeH-1h @R Ok
LRLIL Erick B A b e Fanng @
Froject B] |] reweratecan [Piboeiaecia % Gooa varates 7 Watch [
B PucProject roject Local varabies e BEE
I Pregramy Harne Tipe Addross Avay btvaue Amrbuin Deserigtion - [Symbe akie Type
2 Elevator 1 e Mawd DOOL Ado Mo Trenabion resut 3 DK ol RIAL
F"“‘d’l"'“" 2 e Arakg BOOL AMo Mo Trermsiion resul
z::_r:_“m 3 achalTrne UDKT Ado Mo
T Modocatalicin 4 end Adomatic BOOL Ao Ho Trarrstion result
i @ Local voriabics
£ Aciom T PidModSelactar = e
[Ansioginputviode = :
[Autedvoseing H] O e AND semAce » 0.0 AND nemDes » 0.0:
e 3 i
] Misusibdade T posizionsmonto *
[SetooiioNegative _*I_} [re—— P q] rokmsc
[setsoinnl0Postve @
[Testhdod Tors wapont] ot e
& 5 Transitioes m@‘ l "ME‘ l mﬁ ok
1 Pl Trace oalindet i g}g
& Ca Fusetion blecks o314
bt #. i 43 g 43 P)
IGlobal wrisbics ’ = g{g HEy
20 Automatic variables — . m %}: EHD_IF:
i) 23 Mapped varabies o 2 : g B s
o cramienl n — i ?320 = _Spazio da l-\:IY- oITers e relativo seqno ¢
23 Fetaen vanabies
A Global shaed B Global vavisbiss]
?g":‘m“ [rre=—y Tipe Addeis Gweep | Arey Nkvekos Aiate Deaerphon -
0 Badoround 1 REAL SMD10 ta 05 I proprartional gan
1 Lasdertonic | 2 oddl REAL L HE] L] o1 FI0 megral e
& it 3 sdSepont REAL %MB1S to PAD setpaint from -1 1o +1)
ot /mo Definitions M Resourees, | 4 owdOutpu REAL HhO112] @ PIC cutput vahue
5 © idCasmact BESI w18 ™ A1) Raarthaek e = |
Outpat ¥ Liseary ax
- s EIAND CER < DELETE i FIND AINSERT T <iT

M wmicuings, 8 erzocs. £ acos s FHCOMCAT Elpw i FLOOR: o = Lo Rinanx
Fils PLCPRject.imgs.e

i EE HlaTaN o i Vg i o M
imal updataed, = [Tacn HlATAND ERCosH 2 sigr BT oG i
= ¥
4| b, vl | TR | Do | R | 141 1, Do sanciws bocks | Tanges varnies | T 5 | P Sawd |
Ready EDIT MODE L

1. Workspace window 2. Output window 3. Source code editors 4. Watch window 5. Library window 6. Status
bar 7. Document bar

Losiiag target image

The following paragraphs give an overview of these elements.

D1WWTEO6E o walvoil :

FLuIiD POwWER E[MOTION

PHC STUDIO

2.1.1 THE OUTPUT WINDOW

The Qutput window is the place where PHC Studio prints its output messages. This window contains four tabs:
Build, Find in project, Debug, and Resources.

Qutput 1 x
Generating output file L:~PrjTest~FLCProject~FPLCProject . exp .. completed. -~
Generating output file L:“PrjTe=st~PLCProject“FLCProject =sym =imul conpleted
Generating output file L:“PrjTest“PLCProject ~FLCProject.lst . =sinul .. conpleted.

Generating output file L:~PrjTest-~FLCProject~FLCProject_dyn.lst .. completed

Generating output file L:“PrjTest-PFLCProject PLCProject . cod .. completed.

Code =size: 1C30h [7 KByte)

Free code =space: FE3iD0h { 1016 EBvte)

Data space: 800000 { 512 KByte)

Free data =pace: 7FEElh { G511 EBvte) W

<I » [\ Build ;" Findin project |, Debug ' Resources [

Build

The Bu11d panel displays the output of the following activities:

- opening a project;
- compiling a project;
- downloading code to a target.

Find in project
This panel shows the result of the Find in project activity.

Debug

The Debug panel displays information about advanced debugging activities (for example, breakpoints). De-
pending on the target device you are interfacing with, PHC Studio can print on this output window every PLC
run-time error (for example, division by zero), locating the exact position where the error occurred.

Resources

The Resources panel displays messages related to the specific target device PHC Studio is interfacing with.
2.1.2 THE STATUS BAR

The Status bar displays the state of the application at its left border, and an animated control reporting the
state of communication at its right border.

[Ready AT SOURCEOK | CONNECTED

2.1.3 THE DOCUMENT BAR

The Document bar lists all the documents currently open for editing in PHC Studio.

LinearProfileGen ™8 PidControl %; Global variables

+ eswalvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

2.1.4 THE WATCH WINDOW

The Watch window is one of the many debugging tools supplied by PHC Studio. Among the other debugging
tools, it is worth mentioning the Oscilloscope (see Paragraph 9.2), triggers, and the live debug mode (see Para-
graph 9.2).

Watch LR
g BEE Y
Symiol Value Type Locatien
+ § FEPROBILEGEN UM ETIMEDELEVATOR
- END_AUT... FALSE ool STMECFOMODESELICTOR
- TRACESTARTACO FALSE BOOL glekal
=[] TRACESL. - REAL[]
+ 3 reein . FT_PID STIMECPIDCONTROL
- Fwr La. STIMERPIICONTROL
— N 0 REAL STIMEDPRCONTROL
-k 008 REAL STIMEDPDCONTROL
= out] REAL STIMEDSIDEONTROL
3 recto . CTD_UDINT @BACKGROUND:LAD..
-0 FALSE BOOL BRACKGS AD..
- LD FALSE ool SRACKGROUNDILAD..
—pv w UDINT GBACKEROUNDELAD.
- TRUE ROOL SRACKGROUNDELAD...
-] uDiNT SBACKGROUND:LAD...
— PIDSETPOMT] REAL ghobal

2.1.5 THE LIBRARY WINDOW

The Library window contains a set of different panels, which fall into the categories explained in the follow-
ing paragraphs.

You can choose the display mode by clicking the right button of your mouse. In the [View list] mode, each

element is represented by its name and icon. Instead, a table appears in the [View detail] mode, each row
of which is associated with one of the embedded elements. The latter mode also displays the Type (Operator/
Function) and the description of each element.

If you right-click one of the elements of this panel, and you click | [Object properties] from the dialog box,
then a window appears with further details on the element you selected (input and output supported types,
name of input and output pins, etc.).

In the [View folder] mode each element is grouped into the folder to which it belongs. These folders are use-
ful to logically group the library elements.

2.1.5.1 OPERATORS AND STANDARD BLOCKS

This panel lists basic language elements, such as operators and functions defined by the IEC 61131-3 standard.

Library Bx

Mame Tupe Group Description

@ATAN Function Arithmetic: Arc tangent Computes the principal ar...
[ATANZ Function Arithretic Arc tangent [with 2 parameters] Comp...

CEIL Furnction Arithmatic Rourding up to integer Retuns the s
CONCAT Function String Character string concatenation Exam

Function Aithmetic Cosine Computes the cosine function .

COSH Function Arithmetic Huperbalic cosine Computes the hype..

[f=|DELETE Function String Delete L characters of IN, beginning ...

Miaratar ithmeti rithmeatic divisian,
Opetator and standard blocks |~ Target variables) Target blocks '\ Pid | Standard [

2.1.5.2 TARGET VARIABLES

This panel lists all the system variables, also called target variables, which are the interface between firmware
and PLC application code.

Library rx

MName Type Address Size Group Description

[] systsnaloginputs INT Zw1.0 10 Analog Inputs System analog inputs
msysAnalogElulputs INT w0 10 Analog Outputs Spstem analog outputs
sysD\gltaanuls gooL 0.0 100 Digital Inputs System digital inputs

[tf] sysDigitalDutputs BooL k0.0 100 Drigital Dutputs System digital outputs

jud]sysTimer UDINT #MDEIOOND 1 System Timers System timer [ms]
[b]systiseiDataBlock BYTE %MB1.0 10000 Interal wariables Data block available for user data ma

Operator and standard blocks) Target variables | Target blocks |, Pid) Standard [/

D1WWTEO6E o walvoil

FLUID POWER E[MOTION

PHC STUDIO

2.1.5.3 TARGET BLOCKS

This panel lists all the system functions and function blocks available on the specific target device.

Library 1 x

Narme Type Group Description

®5 TypeDataTime Structure

I sysSTREQU Function Test it two STRINGSs are equal. The
I susSTRCAT Function Append bwo STRINGs. The functionr...
I spdMT_TO_STRING Function Carwert a INT number ba a STRING. ...

Operator and standard blocks |, Target variables | Target blocks " Pid | Standard [

2.1.5.4 INCLUDED LIBRARY PANELS

The panels described in the preceding paragraphs are usually always available in the Library window. How-
ever, other panels may be added to this window, one for each library included in the current PHC Studio project.

For example, the picture above was taken from a PHC Studio project having two included libraries, basic.pl]
and thermmodel.pl] (see Paragraph 4.7).

Library 7 x
Neme Type Group Description

¥ BitToByte Function Compose a byte from 8 bits

& BitToWord Function Compose a word from 16 bits

3 ByteToBit Function b... Split a byte into bits

i ByteToWord Function Compose a word from 2 bytes

FFRIG Function b.. Falling edge detector

Jrrp Function b... D-type flip-flop

FRIRIG Function b... Rising edge detector

grs Function b... Bistable, reset dominant

&R Function b.. Bistable, set dominant v
«| » [\ iperaton and standard biocks | Tarqel varisbles j Target biocks | themmodel | basic |

2.1.6 THE WORKSPACE WINDOW

The Workspace window consists of three distinct panels, as shown in the following picture.

Project L x Definiticns o ox Resources o x
=-E8 PLCProject Project =+ PLCProject Definitions =-£8 Configuration
-3 Counters and timers ... TypeDefs =l veLCr
P LadderLogic = Structures = Public cbjects
- (@ Counters and timers vars E.I: E= Parameters
S-S HMI samples EI actual 4% Status variables
& Z3 Function blocks : 7] max B2 Local /O Mapping
L [ZF, LinearProfileGen L.[7] min %, Rs485
[Elf Ramp (Z] Enumerations <M CANopen
BrEP Elevator 153 SubRanges | W Ethernet
P Loops 7 uintT b =) {% Alarm management
@ Elevator vars (2 Macro ﬂr Alarm groups
- @ Loopsvars M\ Alarms
: hmiAmplitude - [¥ Recipes
5.3 PID
o[22 Function blocks
B8P PidControl
P PidModeSelector
-[EP PIDTrace
B @ PID constants
; [[i] PIDModeAnaloglnput
[[i] PIDModeAutomatic
[7i] PIDMedeManual
[[i] PIDModeOff
[[i] PIDModeTest
f- @ PIDvars
=] Gﬂ Aux Variables
EB Global shared
& Tasks
i+ Timed
-4+ Background
: " LadderLogic
it Init
Project /=0 Definitions Resources Project, o0 Definiti... Resources .\ Project;, =0 Definiti. Resources

s e>walvoil

FLUID POWER E[MOTION

D1WWTEOG6E

PHC STUDIO

2.1.6.1 PROJECT

The Project panel contains a set of folders:
- Tasks: this item lists the system tasks and the programs assigned to each task (see Paragraph 5.3).

2.1.6.2 DEFINITIONS

The Definitions panel contains the definitions of all user-defined data types, such as structures or enumer-
ated types.

2.1.6.3 RESOURCES

The contents of the Resources panel depends on the target device PHC Studio is interfacing with: it may
include configuration elements, schemas, wizards, and so on.

2.1.7 THE SOURCE CODE EDITORS

The PHC Studio programming environment includes a set of editors to manage, edit, and print source files writ-
ten in any of the 5 programming languages defined by the IEC 61131-3 standard (see Chapter 6).

I, PidModeSelector = |[@][52] | [LinearProfileGen = [@][s=
~ | [Do01 a
Wk — | [oooz (* Pre condizioni x) =
] 0003 enableOut := enable AND nombec > 0.0 AND nonDec > 0.0;
0004 E
) 0005 (* Cestione enable e fine posizicnamento %)
0008 IF WOT enableOut THEN
| 0007 posOk = FALSE:
; - 0008 quiss ‘= TRIE,
npManusl P P J=| | |ooog decel ‘= FALSE:
. 0010 actPos := targPos:
0011 actTargPos := targPos;
Manual_setpoint Analog_setpoint Auto_Phase_0 0012 absSpeed = 0.0,
— Il 0013 previpeed (= 0.0;
sl =l [0014 actSpeed (= 0.0;
setpointioFostive[N] 0015 Aothoc = 00!
| | [oo1e rSpeed 1= 0.0
0017 RETURN
[] end_tanual end_Analog [[] end_AutoPhased Egig END_IF;
0020 (* Spazio da percorrers e relativo seanc)
0021 IF actTargPos >= actPos THEN
0022 renSpace - actTargPos — actPos;
0023 sign .= 1.0;
0024 E1SE
. 0025 remSpace := actPos - actTargPos;
- ||oo2s sign = -1 0; A
< i] v 4| i | 3
13 PidControl = | @ |[%= | | B Ladderlogic =N R =]
0001 |- Tp 2
PID regulator nplLogichata
1 |
I
ToPid L
FT_PID -
[pidFeedback > actual ¥ [——<__pid0utpul] -
[PidSetpoint > set_pait dift
+| noise limf=
*[offset overfiow | ———_outPidOverfiow] —
+| manual_in
| — foDelay
[inpPidResel > rst inpLogicData
[[10000 }—junt_bana I
[pE 5@
[pERT >
(oKD ™
o limit_L.
~ limit_H
« m r « . e 3

The definition of both global and local variables is supported by specific spreadsheet-like editors

Mame Type Address Group Array Initvalue Attribute Description
1 |hmiElevatorOn BOOL BolMX1.78 Mo Positioning enable
2 |hmiElevatorStanding BOOL %MX1.83 Mo If TRUE, elevator is not moving
3 |hmiPidTest BOOL %eMX1.1319 Mo Starts execution of PID test
4 |traceStartAcg BOOL Auto Mo - Start of test PID acquisition
5 |traceTrigger BOOL SolX1.1286 Mo
& |hmiPIDMode IMNT BaMW1.32 Mo
7 |tracePIDLen UINT SaMW1.1284 Mo

D1WWTEO6E o walvoil -

FLUID POWER E[MOTION

PHC STUDIO

s e>walvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

3. USING THE ENVIRONMENT

This chapter shows you how to deal with the many UI elements PHC Studio is composed of, in order to let you
set up the IDE in the way which best suits to your specific development process.

3.1 LAYOUT CUSTOMIZATION

The layout of PHC Studio’s workspace can be freely customized in order to suit your needs.

PHC Studio takes care to save the layout configuration on application exit, in order to persist your preferences
between different working sessions.

3.2 TOOLBARS
3.2.1 SHOWING/HIDING TOOLBARS
In details, in order to show (or hide) a toolbar, open the View>Toolbars menu and select the desired toolbar

(for example, the FBD bar).
The toolbar is then shown (hidden).

™3 File Edit View Project On-line Debug Scheme Variables Window Tools Developer Help

B #i%EHEERES
gBEE
B xh 20 b ol

o gDEoeDx

Local variables

Mame Type Address Array Init value Attribute Description
1 |start1 BOOL Auto No
2 |start2 BOOL Auto No
3 |ready BOOL Auto Mo
A run [=Tatall Aorkn Kl
Project R x| | Resources Main W

- PLCProject Project
+.- [C7] Function blocks

-[Z3 Functions I,\\,

-1 Global variables

Err S—

0001

3.2.2 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to the destination.

Tu File Bdt View Project On-ine Debug Scheme Vaisbles Window Took Deeloper Help

BAZR - LR AL RS CEEEIIDE M Ak 0007 AR _i_-}é%h_r SPROOD 1% E
= S
. L (] Looss 22 Devanar e Tr—
i Lozl vanables
1P Lasaarlage | Hame Tipe Asarass Hermy InResius Annsute Descrghzn

The toolbar shows up in the new position.

dm Pie Lat View Projest On-bne Debwg Scheme Varables Window Tool Developer Help

BER - - RB AL NS EFCIIIH B B a0 =000 BRVL HE R]r L EDBooDw-1% F 8
e (=3

[Pocget FK g macontd [roes 3 B Fmp——

i i
= CH Counters md e Local varisbles

o walvoil -

DIWWTEOGE e e, maTion

PHC STUDIO

3.3 DOCKING WINDOWS
3.3.1 SHOWING/HIDING TOOL WINDOWS

The View>Tool windows

window).

The tool window is then shown (hidden).

B3 File Edit View Project On-line Debug Scheme Varicbles Window Tools Developer Help

BEG -~ s2B A% SR OREFESTE B @ sl e 0

Glra SR eo®rd-1% ¢ 5
BEES

[project 7 x| B2 Pidcontrol | toops | ™8 Eevator | B, Pidvodeselector
=--ES PicExample Project
5 E3 Countars and timers Local variables
WP Lagderiogic Name Type Address Amay Initvalue
B~) Counters and timers vars 1 Pid FT_PID Auto No
ES“F’::;“ s 2 |ipr LowPassFiltal AUto No
S1=P Eevasar
e=-[EP Loops
@ Bevatorvars 0001
@ Loopsvars PID regulator
-3 PD

[(2] Function blocks.

3P PidControl

J=P PidModeSelector
~[E]P PiDTrace

@ PO constants

@) PiDvars

Tasks

pidFeedback
:

1B Project { = Definitions (B Resources € [

Output

Preprocessing 16T campleted
Preprocessing moduls HaIN complsted
Preprocessing Global shared completed
Preprocessing Pid completed

Preprocessing Standard completed
BT A A e et et

3.3.2 FLOATING TOOL WINDOWS

menu allows you to show (or hide) a tool window (for example, the Qutput

You can undock any window from its default location in PHC Studio and move it anywhere by dragging it to the

location you want.

Take back a window to its most recent docked location simply double-click the title bar of the window.

3.3.3 DOCKING TOOL WINDOWS

PHC Studio shows you a guide diamond when you drag a window to another location to help you easily re-dock

the window.

While dragging a window move the mouse cursor on the position of the guide diamond you want to use as new

window position.

dl

=
-

153 (0 () (1 |
=

]

Tool windows can be fastened to one side of a frame in PHC Studio or within a frame.

10 e>uwalvoil

FLuIiD PowER E[MOTION

D1WWTEOG6E

PHC STUDIO

3.3.4 AUTO-HIDE TOOL WINDOWS

By the pin button on the top right corner of the window you can switch the window to auto-hide mode or to
regular docking mode.

3.4 WORKING WITH WINDOWS

PHC Studio allows to open many source code editors so that the workspace could get rather messy.

You can easily navigate between these windows through the Document bar and the Window menu.

Debug Scheme Variables [Window | Tools Developer Help
‘B SR LRE[FE Coca TR T T

LS DDBODN E‘; |
—_— inge Icons
b4 B
e = [Pivodeselector
Local variables
1 PidControl
MName P 5 Array Init value Attribute Description
1 |end_Manual SR No Transition result
2 |end_analog E Tl e et No Transition result
3 actualTime Mo

I:P inpManual I:P inp# I:F inpAutomat [] hmiPidTest

‘ Manusl_setpoint ‘ ‘ Analog_setpoint ‘ ‘ Auto_Phase_0 ‘ Test_Phase_0

ManualMode [N] Analoginputidode [N] Ammt% Testhodeinit[P]
Setpoint10Positive

Setpoint1ONegative[M]

Hv:l end_Manual Hv:l end_Analog é:‘ end_AutoPhasel [] end TestPhaseo

3.4.1 THE DOCUMENT BAR

The Document bar allows to switch between all the currently open editors, simply by clicking on the corre-
sponding name.

B8 puicinirel [Losps 1§ Beater L\W

Local vanables e
" Elevatce

MName Tipa Adrets mrrme— Irut value Attt Desengtan
1 eng_Manual BOOL Auty Ho i Transition resunt
2 end_hnalog BOOL Aty Ha Transition resull
3 |acuaMime UDINT Auty to

[“] nplsou [F npanabgSezont [F [om— |_T_| nepdest

Mansal_sctport Anslog_seipoint duty_Phase_5 Tesd_Phase
Sntpoint SPoatae [N Satpoeti DHegative| N
| | | [
"3 PieCantrol [toces g Bevator Q‘ T, PeModetelecter
Hame Troe Address Amay Wflvalue ASribute Dscription
1 |RFrofileGen LinearProfieC Auto Ho . Prodle position gensrator

Gengrator of postions for the slevator

You can show or hide the Document bar with the menu option of the same name in the menu
View>Toolbars>Document bar .

[]
D1WWTEO6E o walvoil i:

nnnnnnnnnnn [MoTian

PHC STUDIO

3.4.2 THE WINDOW MENU

The Window menu is an alternative to the Document bar: it lists all the currently open editors and allows
to switch between them.

Window | Tools Develope
Cascade ﬁ
Tile
Amange lcons
Close All

1 PidCortrol
| 2 Loops 9 |
E 3 Blevator Lv?

4 PidModeSelector

Moreover, this menu supplies a few commands to automate some basic tasks, such as closing all windows.

3.5 FULL SCREEN MODE

In order to ease the coding of your application, you may want to switch on the full screen mode. In full screen
mode, the source code editor extends to the whole working area, making easier the job of editing the code,
notably when graphical programming languages (that is, LD, FBD, and SFC) are involved.

O 4‘- . fll.\. [
= e = [
Pl | ien| | ey 1......:;]
R ! O W s
= b= ==
Pl —r—

JIJT_. i

= = =
[0 it

[

You can switch on and off the full screen mode with the View>Full screen .

3.6 ENVIRONMENT OPTIONS

If you click File>Options... , a multi-tab dialog box appears and lets you customize some options of PHC Studio.

3.6.1 GENERAL

3.6.1.1 SAVE OPTIONS

Autosave: ifthe Enable Autosave box is checked, PHC Studio periodically saves the whole project. You
can specify the period of execution of this task by entering the number of minutes between two automatic sav-

ings in the Autosave interval text box.

Max previous version to keep: if set greater than 0 indicates the maximum number of
copies of the project that must be zipped and stored in the PreviouslVersions folder.

3.6.1.2 OUTPUT WINDOW

You can specify the family and the size of the font used for output window.

(]
12 e»walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

3.6.1.3 COMMUNICATION

If enabled, the last used port will be set as the default one.

3.6.1.4 TOOLTIP

If enabled, small information boxes will appear when user places the cursor over a symbol in the editors.

3.6.1.5 TOOL WINDOWS

You can specify the family and the size of the font used for tool windows.

Reset bars positions: the layout of the dock bars in the IDE will be resetted to default posi-
tions and dimensions. In order to take effect PHC Studio must be restarted.

3.6.2 GRAPHIC EDITOR

This panel lets you edit the properties of the LD, FBD, and SFC source code editors.
You can specify the family and the size of the font used for graphical editors.
You can modify also the colours of the graphical object.

Ell

Program options | J

General | Graphic Editor |Text Editors I Language I Tools I Mergel

Graphic object colars [| |'|

Network grid color EEEN

Background network co EEE

Object color

Text color mim |

Selected text color EEET

Error color

Comment color BEE

Connection color _

Select connection co\or
Trigger color

Updatable object color
Block color

Block 140 element colors
SFC action block

SFC transttion block
SFC selected transition

oK [Monula |[2

3.6.3 TEXT EDITORS

You can specify the family and the size of the font both for code and variable editors.

3.6.4 LANGUAGE

You can change the language of the environment by selecting a new one from the list shown in this panel.

After selecting the new language, press the Se]ect button and confirm by clicking OK. This change will be ef-
fective only the next time you start PHC Studio.

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

g Bl
Program options ﬁ

| General I Graphic Editor I Text Editors | Language |Too|s I Mergel

Default Enilish
ITA - taliano

Select the program language

You need to restart the program
forthe change to take effect

Select

[ok [onula [2

3.6.5 TOOLS

You can add up to 16 commands to the T001S menu. These commands can be associated with any program
that will run on your operating system. You can also specify arguments for any command that you add to the
Too1s menu. The following procedure shows you how to add a tool to the T007S menu.

1) Type the full path of the executable file of the tool in the Command text box. Otherwise, you can specify
the filename by selecting it from Windows Explorer, which you open by clicking the Browse button.

[Program options ﬁ1
| General I Graphic Editor | Text Editors | Language | Tools | Merge
Command D
Arguments
Menu sting
Add | [Delete || Mody
[ok [aonule |[2 |
\

2) Inthe Arguments text box, type the arguments - if any - to be passed to the executable command
mentioned at step 1. They must be separated by a space.

3) Enterin Menu string the name you want to give to the tool you are adding. This is the string that will
be displayed in the T001S menu.

4) Press Add to effectively insert the new command into the suitable menu.
5) Press OK to confirm, or Cancel to quit.

For example, let us assume that you want to add Windows calculatortothe Tool!S menu:
- Fill the fields of the dialog box as displayed.

11+ e>uwalvoil

uuuuuuuuu marian D1WWTEO6E

PHC STUDIO

" B
Program options u

| General I Graphic Editor | Text Editors | Language | Toadls | Merge

Command C:\Windows'\ System 32'calc exe E]
Argumerts

Menu string Calc|

[ad [Delete |[Modty |

[ok J[A |[2 |

[

- Press Add. The name you gave to the new tool is now displayed in the list box at the top of the panel.

i n
Program options. u
| General I Graphic Editor I Text Editors I Language ‘ Tools | Merge
Calc
Command C:\Windows\System32\calc exe E]
Arguments

Menu string Cale

[ad | Delte |[Modty |

oK | Anda |[2

And in the Tools>Calc menu as well.

I Tools |

Calc

[]
D1WWTEO6E o walvoil ;s

FLuIiD POwWER E[MOTION

PHC STUDIO

3.6.6 MERGE

Here you can set the merge function behavior (see Paragraph 4.8.3.2 for more details).

Program options u\

|Geneml IGmph\c Editor | Text Editors | Language ITooIs | Merge _
Idertical name
Objects with dfferent types [ase for action -]
Ohject with same type fnot [Askfcr action ']
variables)
Variables [Askfcr action ']
Check address
Overlapped [.F\skfcr action ']
E:r?ay;ll:asta mapped [Dc e v]

| 0K I [Annulla] [?]

1c e>uwalvoil

FLuio Pawer ElMaTian D1WWTEOG6E

PHC STUDIO

4. MANAGING PROJECTS

This chapter focuses on PHC Studio projects.

A project corresponds to a PLC application and includes all the required elements to run that application on the
target device, including its source code, links to libraries, information about the target device and so on.

The following paragraphs explain how to properly work with projects and their elements.

4.1 CREATING A NEW PROJECT

To start a new project, click & File>New project of the PHC Studio main window.

r hl
New project @

Froject

Marne

Directom |- E]

Target selection

Select the target for a new project | VPLCT 1.0 ']

Options

[Case sensitive

[]9] [Cancel]

b ’]

You are required to enter the name of the new project in the Name control. The string you enter will also be
the name of the folder which will contain all the files making up the PHC Studio project. The pathname in the

Directory control indicates the default location of this folder.

Target selection allows you to specify the target device which will run the project.

Finally, you can make the project case-sensitive by activating the related option. Note that, by default, this op-
tion is not active, in compliance with IEC 61131-3 standard: when you choose to create a case-sensitive project,
it will not be standard-compliant.

When you confirm your decision to create a new project and the whole required information has been provided,
PHC Studio completes the operation, creating the project directory and all project files; then, the project is
opened.

The list of devices from which you can select the target for the project you are creating depends on the contents
of the catalog of target devices available to PHC Studio.

When the desired target is missing, either you have run the wrong setup executable or you have to run a sepa-
rate setup which is responsible to update the catalog to include the target device. In both cases, you should
contact your hardware supplier for support.

4.2 UPLOADING THE PROJECT FROM THE TARGET DEVICE

Depending on the target device you are interfacing with, you may be able to upload a working PHC Studio pro-
ject from the target itself.

In order to upload the project from the target device, follow the procedure below:

1) Click the File>Import project from target menu voice of the PHC Studio main window, which opens
the Target list dialog box.

[]
D1WWTEO6E o walvoil 1/

nnnnnnnnnnn |IMoTion

PHC STUDIO

4.3
4.3.1

4.3.2

4.3.3

Impaort project from target lél

Select target device:

Description

DEMOTARGET2_PLC

DEMOTARGET_PLC

m

Configure Connection

rees Cancel

L

2) From the shown list select the target device from which you want to upload the project.
3) Configure Connection with correct parameters (see Paragraph 8.1 for more details).

4) You can test the connection with the target device by Verify Connection button. PHC Studio tries to
establish the connection and reports the test result.

5) If the connection is available confirm the operation by clicking on the Upload Sources button. When
the application upload completes successfully, the project is open and ready for editing.

SAVING THE PROJECT
PERSISTING CHANGES TO THE PROJECT

When you make any change to the project (for example, you add a new Program Organization Unit) you are
required to save the project in order to persist that change.

To save the project, you can select the corresponding item [@ File>Save project .

SAVING TO AN ALTERNATIVE LOCATION

You can also use the File>Save project As ... command to rename the project, change its format or modify

the location of where you want save the file.
PHC Studio asks you to select the new destination (which must be an empty directory), then saves a copy of the

project to that location and opens this new project file for editing.

AUTOSAVE

PHC Studio includes an AutoSave feature that periodically saves your project as you work on it.
AutoSave saves data in a separate folder, called Ba Ckup, stored at the same location of the project folder.

AutoSave protects your project in the event that PHC Studio unexpectedly quits. When PHC Studio is started
again, if the Backup folder is present, you are asked to restore the last valid backup file of the project.

13 e uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

Logiclab | |

Last program execution is abnermally terminated
F ! % Restore the backup files ¥

Si [[o

L

When you close PHC Studio correctly the Backup folder and its contents are deleted. You can specify the inter-
val time (in minutes) between saving.

By default AutoSave is running with 1 minute of interval (see Paragraph 3.6 for more details).

4.3.4 BACKUP COPIES

PHC Studio includes a backup feature of the previous version of the project on which you are working.

When you explicitly save the project, PHC Studio saves the current version (before save) of the project in the
PreviousVersions folder stored at the same location of the project folder;

You can set the upper limit of the backup files to be kept on your PC. By default this is 10, set to 0 if you want
to disable this feature (see Paragraph 3.6 for more details).

4.4 MANAGING EXISTING PROJECTS

4.4.1 OPENING AN EXISTING PHC STUDIO PROJECT

To open an existing project, click File>Open project of PHC Studio’s main window, or in the Welcome

page (when no project is open). This causes a dialog box to appear, which lets you load the directory containing
the project and select the relative project file.

4.4.2 EDITING THE PROJECT

In order to modify an element of a project, you need first to open that element by double-clicking its name,
which you can find by browsing the tree structure of the project tab of the Workspace bar.

By double-clicking the name of the object you want to modify, you open an editor consistent with the object
type: for example, when you double-click the name of a project POU, the appropriate source code editor is
shown; if you double-click the name of a global variable, the variable editor is shown.

Note that PHC Studio prevents you from applying changes to elements of a project, when at least one of the
following conditions holds:

- you are in debug mode.
- Itis an object of an included library (whereas you can modify an object that you imported from a library).
- The project is opened in read-only mode (view project).

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

4.4.3 CLOSING THE PROJECT

You can terminate the working session either by explicitly closing the project or by exiting PHC Studio. In both
cases, when there are changes not yet persisted to file, PHC Studio asks you to choose between saving and
discarding them.

Logiclab =

|9] Save current project ?
L - 4

[si | [No | [Amnuia |

To close the project, select the item : File>Close project ; PHC Studio shows the Welcome page, so that you
can rapidly start a new working session.

4.5 DISTRIBUTING PROJECTS

When you need to share a project with another developer you can send him/her either a copy of the project
file(s) or a redistributable source module (RSM) generated by PHC Studio.

In the former case, the number of files you have to share depends on the format of the project file:

- PLC single project file (. ppJjSs file extension): the project file itself contains the whole information needed
to run the application (assuming the receiving developer has an appropriate available target device) including
all source code modules, so that you need to share only the . ppJjs file.

- PLC multiple project file (.ppJjX or .ppJj file extension): the project file contains only the links to the

source code modules composing the project, which are stored as single files in the project directory. You need
to share the whole directory.

- Full XML PLC project file (.plcprj): the project file is generated entirely in XML language. The information
contained in the project file and its behavior are the same as .ppjs file extension.

Alternatively, you can generate a redistributable source module (RSM) with the corresponding item
Project>Generate redistributable source module .

PHC Studio notifies you of the name of the RSM file and lets you choose whether to protect the file with a pass-
word or not. If you choose to protect the file, PHC Studio asks you to insert the password.

Generate redistributable source moedule [= ‘

Protect with password

PLCProject2_09012015104122.rsm

Get password

oK Cancel

Passward:

Confirm password:

l OK] Cancel

The advantages of the RSM file format are:

- the source code is encoded in binary format, thus it cannot be read by third parties which do not use
PHC Studio, making a transfer over the Internet more secure;

- it can be protected with a password, which will be required by PHC Studio on file opening;
- being a binary file, its size is reduced.

4.6 PROJECT OPTIONS

You can edit some significant project properties choosing Project>Options... .

(]
20 e>walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

4.6.1 PROJECT INFO

Here you can set some basic properties related to the project, such as its application name and version.

- N
Project options ﬂ
Download | Debug | Build events ‘
Genersl | Codegenersiion | Buldouipt |
Project info
Project: FlcExample {max 10 chars)
Version 15 (example: 1.0)

Authar John Doe

Note

Compatibilty options
Use new LD editor

Use customizable workspace

[ok [Awida |[fepica |[2 |

- Use new LD editor: the new Ladder Diagram editor is easier to use, by helping you in common opera-
tions working on the diagram will be faster and more efficient. Note that, by default, this option is active.

- Use customizable workspace: allows you to manage your project tree in order to reach a more ef-
ficient workspace. Note that, by default, this option is active.

4.6.2 CODE GENERATION

Here you can edit some properties about code generation.

P Ny
Project aptions ﬁ
Download Debug Build events Cross Reference

Code generation Build output

=

) @

Check functions and function blocks extemal variables

=

Print debug informations

Allow only integer indexes for amays
Runtime check of amay bounds
Runtime check of pointers

Run4ime check of division by zero

15 o R i R |

Enable SFC control flags {extension to standard)
Enable WAITING statement (extension to standard)
Diata copy size waming threshald (bytes. O=disable) 200

Disable waming emission /|

Disabled waming codes

[ok][Awda || fepica |[2 |

[]
D1WWTEO6E o walvoil

FLuIiD POwWER E[MOTION

PHC STUDIO

- Case sensitivity: you can set the project as case-sensitive checking this option. Note that, by default,
this option is not active.

- Check function and function block external variables: if this option is disabled, all
functions and function blocks can access to global variables without declaring them as external variables. Note
that, by default, this option is enabled respecting the IEC 61131-3 standard.

- Print debug information: prints on the output window some significant debug info.

- Allow only integer indexes for arrays: if this option is checked you cannot use BYTE, WORD
or DWORD as array indexes.

- Run-time check of array bounds: if this option is checked some check code is added to verify
that array indexes are not out of bounds during run-time. This option is settable depending on target device.

- Run-time check of division by Zzero: if this option is checked some check code is added to
verify that divisions by zero are not performed on arrays during run-time. This option is settable depending
on target device.

- Run-time check of pointers: if this option is checked the pointers will be test for their validity be-
fore their use, calling a user-defined function checkptr on target. Therefore this option is settable depending
on target device.

- Enable SFC control flags (extension to standard): if this option is checked, HOLD and
RESET flags for SFC POU are enabled.

- Enable WAITING statement (extension to standard): if this option is checked the WAIT -

ING construct for the ST language is added as IEC 61131-3 extension (see Paragraph 11.7.3 for more de-
tails).

- Data copy size warning threshold (bytes, 0=disable): when arrays or structures are
copied, if their dimension exceed the specified threshold, a warning is emitted in order to inform the possible
loss of performance of the PLC. If the threshold is set to 0, no warnings are emitted.

- Disable warning emission: if this option is checked warning emissions are not printed on the output
window.

- Disable warning codes: if this option is checked some specified warning emissions are not printed
on the output window.

4.6.3 BUILD OUTPUT

Here you can edit some significant properties of the output files generated by compiling operation.

Project options @
| Download | Debug I Build events
| General I Code generation | Build output
Listing
Generate crosseference =
Generate listing file
Include source code |}
Downlozdable target files
Creete downloadohls target fles
PLC application: PlcExample bin
Source code: PlcExample_source bin
Debug PlcExample_debug bin
EXP
Generate EXP file
[ok J[Amda][sepica [2 |

(]
2 ewalvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

Listing section

- Generate 1isting file: if this option is checked the compiler will generate a listing file named as
projectname.1st.

- Include source code (active only if Generate 1isting file is checked): if this option is
checked the source code will be inserted as visible in the 1St file. Otherwise the source code will be hidden.
Downloadable target files section

- Create downloadable target files: ifthis option is checked the compiler will generate the binary
files that can be downloaded to the target. You can specify custom filenames or use default ones.

Please note that only valid Windows filename are accepted!

- PLC application (activeonlyif Create downloadable target files is checked): this field
specifies the name of the PLC application binary file. By default projectname.bin.

- Source code (activeonly if Create downloadable target files ischecked): this field speci-
fies the name of the Source code binary file. By default projectname._source.bin.

- Debug (active only if Create downloadable target files is checked): this field specifies the
name of the Debug symbol binary file. By default projectname._debug.bin

Generate EXP file section

- Generate EXP file: if this option is checked the compiler will generate an EXP file named as pro-
Jectname.exp

4.6.4 DOWNLOAD

Here you can edit some significant properties of the download behavior (see Paragraph 8.3.1 for more informa-

tion).
Project options Iéj

_______ Genem\ | Code generation | Build output |

H Download | Debug | Build events |
Source code
Download time On PLC application download -
Protect with password
Password |

(|
Debug symbals
Download time On PLC application download w
[ok [Amda | [sepica |[2

4.6.5 DEBUG

Here you can edit some significant properties of the debug behavior.

[]
D1WWTEO6E o walvoil ::

nnnnnnnnnnn |IMoTion

PHC STUDIO

[N
Project options ﬂ
General Code generation Build output
o

Palling period for debug functions {ms) 20
Number of displayed amay elemerts 20

without alert message

Polling period between more variables (ms))
Autosave watch list]
Enable memory dump (%MW <address> symtax) =]

L

i

- Polling period for debug function (ms): set the active sampling period of the functions’s

status.

- Number of displayed array elements without alert message: specifies the maximum

number of array elements to be added in watch window without being alerted.

- Polling period between more variables (ms): set the sleep period between sampling two

variables.

- Autosave watch Tist: if checked (not by default) the watch list status will be saved into a file, when
the project is closed (see Paragraph 9.1.7 for more details).

4.6.6 BUILD EVENTS

Here you can specify commands that run before the build starts or after the build finishes. You can also use a
set of defined environment variables listed on the top of the window.

Project options. [&J
‘ General I Code generation I Build output |
\ Download [Debug If Blid everts
Environment variables
PRJTITLE PRJPATH PRJBASENAME IMGNAME APPLPATH
TARGETDEFMAME FIRMWAREFILENAME PRIRELEASE
PRJVERSION PRJAUTHOR PRJCONN
Post-build commands:
-
H
Post-download commands
[ok][Awda |[Aopica |[2
e A

4.7 SELECTING THE TARGET DEVICE

You may need to port a PLC application on a target device which differs from the one you originally wrote the

code for. Follow the instructions below to adapt your PHC Studio project to a new target device.

1) Click Project>Select target menu of the PHC Studio main window. This causes the following dialog

box to appear.

2 e walvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

2) Select one of the target devices listed in the combo box.

3) Click Change to confirm your choice, Cancel to abort.
4) If you confirm, PHC Studio displays the following dialog box.

Logiclab

""7"| This operation requires to save the project.
&' continue the operation ?

Press Yes to complete the conversion, No to quit.

If you press Yes, PHC Studio updates the project to work with the new target.

It also makes a backup copy of the project file(s) in a sub-directory inside the project directory, so that
you can roll-back the operation by manually (i.e., using Windows Explorer) replacing the project file(s)
with the backup copy.

4.8 WORKING WITH LIBRARIES

Libraries are a powerful tool for sharing objects between PHC Studio projects. Libraries are usually stored in
dedicated source file, whose extensionis . p11.

4.8.1 THE LIBRARY MANAGER

Project library list [
Mame Link. Add
FID C:\Program Files [#86)%wel PC Toals\LogicLabd\Librari... T ——
Standard C:\Program Files [#86)%wel PC Toals\LogicLabd\Librari...
UnLink.
Relink
< 1 | » Cloze

L J

The library manager lists all the libraries currently included in a PHC Studio project. It also allows you to include
or remove libraries.

To access the library manager, click & Project>Library manager .

4.8.1.1 INCLUDING A LIBRARY

The following procedure shows you how to include a library in @ PHC Studio project, which results in all the li-
brary’s objects becoming available to the current project.

Including a library means that a reference to the library’s . p1 1 file is added to the current project, and that a
local copy of the library is made. Note that you cannot edit the elements of an included library, unlike imported
objects.

If you want to copy or move a project which includes one or more libraries, make sure that references to those
libraries are still valid in the new location.
1) Click & Project>Library manager , which opens the Library manager dialog box.

2) Press the Add button, which causes an explorer dialog box to appear, to let you select the .p77 file of
the library you want to open.

3) When you have found the . p1] file, open it either by double-clicking it or by pressing the pen button.
The name of the library and its absolute pathname are now displayed in a new row at the bottom of the
list in the white box.

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

4) Repeat step 1, 2, and 3 for all the libraries you wish to include.

5) When you have finished including libraries, press either 0K to confirm, or Cancel to quit.

4.8.1.2 REMOVING A LIBRARY
The following procedure shows you how to remove an included library from the current project. Remember that
removing a library does not mean erasing the library itself, but the project’s reference to it.

1) Click & Project>Library manager menu of the PHC Studio main window, which opens the Library
manager dialog box.

Praject library list ==
Name Link Add
FID LC:Program Files (#86)vAaxel PC Toolsh\LogicLab4\Librar... [—
Standard C:vProgram Files (x86]%Axel PC Tools\LogicLab44Librari

UnLink.

ReLink

Clase

|

Select the library you wish to remove by clicking its name once. The Remove button is now enabled.

.
Project library list ==
Nare: Link. Add
FID C:4Program Files (x86]Axel PC Tools\Logicl b4\ ibrari Cm—
Standard C:Program Files (x86]\Axel PC Toals\LogicLabd“Librari.
] [r Close:

2) Click the Remove button, which causes the reference to the selected library to disappear from the Pro-
Jject library list.

3) Repeat for all the libraries you wish to remove. Alternatively, if you want to remove all the libraries, you
can press the Remove all button.

4) When you have finished removing libraries, press either 0K to confirm, or Cancel not to apply changes.

4.8.2 EXPORTING TO A LIBRARY
You may export an object from the currently open project to a library, in order to make that object available to
other projects. The following procedure shows you how to export objects to a library.

1) Look for the object you want to export by browsing the tree structure of the project tab of the Work -
Space bar, then click once the name of the object.

2) Click Project>Export object to library . This causes the following dialog box to appear.
" Export PLC object 3
Export to librany D

Code encryption

oK] [Cancel

(]
s e>walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

3) Enter the destination library by specifying the location of its . p1 1 file. You can do this by:
- typing the full pathname in the white text box;

- clicking the Browse button , in order to open an explorer dialog box which allows you to browse your
disk and the network.
4) You may optionally choose to encrypt the source code of the POU you are exporting, in order to protect
your intellectual property.
5) Click 0K to confirm the operation, otherwise press Cancel to quit.

If at Step 3 of this procedure you enter the name of a non-existing . p 1/ file, PHC Studio creates the file, thus
establishing a new library.

4.8.2.1 UNDOING EXPORT TO A LIBRARY

So far, it is not possible to undo export to a library. The only possibility to remove an object is to create another
library containing all the objects of the current one, except the one you wish to delete.

4.8.3 IMPORTING FROM A LIBRARY OR ANOTHER SOURCE

You can import an object from a library in order to use it in the current project. When you import an object from
a library, the local copy of the object loses its reference to the original library and it belongs exclusively to the
current project. Therefore, you can edit imported objects, unlike objects of included libraries.

There are two ways of getting a POU from a library. The following procedure shows you how to import objects
from a library.

1) Click Project>Import object from library . This causes an explorer dialog box to appear, which lets
you select the .pT1 file of the library you want to open.
2) When you have found the . p1] file, open it either by double-clicking it or by pressing the Open button.

The dialog box of the library explorer appears in foreground. Each tab in the dialog box contains a list of
objects of a type consistent with the tab’s title.

Object browser Iéj
Objects fiter
Mame Type
Programs Operators |cro Function blocks
Function Blocks FFCTD_DINT Function blocks
Functions Standard functions E CTD_UDIMNT Function blocks
Wariables Local variables fcru Function blocks
Wiz (s Bhesls e E CTU_DINT Function blocks
FFCTU_UDINT Function blacks
[Check all] [Check none] E ETUD Function blacks
L CTUD_DINT Function blocks
£ CTUD_UDINT Function blocks
Other filters LFF_TRIG Function blocks
N ame « FFR_TRIG Function blocks
RS Function blacks
Location | 4 fFsh Function blocks
. £ T0F Function blacks
Wereyy £FTOM Function blacks
Vars tope [l &g Function blocks
“Wars group [" v]
a | [l 3
Impart objects Enable merge method [Select all] [Select none]
h 4

3) Select the tab of the type of the object(s) you want to import. You can also make simple queries on the
objects in each tab by using F771ters. However, note that only the Name filter actually applies to li-
braries. To use it, select a tab, then enter the name of the desired object(s), even using the * wildcard, if
necessary.

4) Select the object(s) you want to import, then press the Import object button.

5) When you have finished importing objects, press indifferently 0K or Cancel to close the Library
browser.

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

4.8.3.1

4.8.3.2

4.8.4

UNDOING IMPORT FROM A LIBRARY

When you import an object in a PHC Studio project, you actually make a local copy of that object. Therefore,
you just need to delete the local object in order to undo import.

MERGE FUNCTION

When you import objects in a PHC Studio project or insert a copied mapped variable, you may encounter an

overlapping address or duplicate naming warning.

By setting the corresponding environment options (see Paragraph 3.6 for more details) you can choose the be-
havior that PHC Studio should keep when encountering those problems.

The possible actions are:

After importing objects, PHC Studio generates a log file in the project folder with detailed info.

. Take from Do
LS AR library nothing
If different types X X X
Naming If same type but not
N . X X X
behavior variables
If both variables X X X
If address overlaps X X X
Address
behavior Copy/paste mapped X X

variable

ASK (default): user has to decide every time an action is required.

Automatic: a valid name or address is automatically generated by PHC Studio and assigned to the im-

ported object.

Take from library: the name or the address is taken from the imported object.

Do nothing: the name or the address of the objects in the project are not modified.

UPDATING EXISTING LIBRARIES

If you edit a linked library file you can refresh its content on the project without closing PHC Studio.

1)
2)

Click # Project>Refresh all libraries .
If the file is correct, PHC Studio updates the linked library content and prints a successful message in the

output window, otherwise no changes are made on the existing linked library.

2z e walvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

5. MANAGING PROJECT ELEMENTS

This chapter shows you how to deal with the elements which compose a project, namely: Program Organization
Units (briefly, POUs), tasks, derived data types, and variables.

5.1 PROGRAM ORGANIZATION UNITS

A POU is a Program Organization Unit of type Program, Function or Function block.
This paragraph shows you how to add new POUs to the project, how to edit and eventually remove them.

5.1.1 CREATING A NEW PROGRAM ORGANIZATION UNIT

In order to Add a POU select the appropriate voice of the menu
Project>New Object>New program
Please note that the item of the sub-menu may change according to the type of the POU you want to create.

PHC Studio will show you a dialog box in where you must select the specific language for the new POU and enter
its name.

New program I&

Language

@IL ©FD OLW @S ©SsC

Name

Task

Azzign to [']

Confirm the operation by clicking on the OK button.

Alternatively, you can create a new POU from the context menu by selecting a folder or the root element of the
project (see Paragraph 5.7.4).

After creating a new program, an alert icon (interrogation mark) appears below the new program icon.

B ----- =3 Programs
o--[E]P Main

|8 PIDControl
& Tasks

This alert icon indicates that the program is not yet associated to a task. Refer to paragraph 5.3.1 to assign the
program to the desired task.

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

5.1.1.1

5.1.2

5.1.3

ASSIGNING A PROGRAM TO A TASK AT CREATION TIME

When creating a new program, PHC Studio gives you the chance to assign that program to a task at the same
time: select the task you want the program to be assigned to from the list shown in the T@Sk section of the
New program window.

New program @
Language
@I @ FBD @ LD ©sT @® SFC
Name
Task
Agzign o [Iml V]

EDITING POUS

To edit a POU, open it by double-clicking it from the project tree. The relative editor opens and lets you modify
the source code of the POU.

Project

Project
=23 PLCE@mple Project

R x PIDTrace (=] resources

f:l Counters and timers

-3 PLCExample Project
L3 Counters and timers

Local variables

- (3 HMIsamples £ HMIsamples Name Tee A
=& P &-E3 PD 1 |n INT Aute
- Function blocks 7

=2P PidControl
[P PidModeSelector

- [0 Function blocks
P PidControl
I2P PidModeSelector

2 |runAcq BOOL Aute

e P D Trace Wl PiDTroce]

@ PID constants @ PID constants 000l
H @ PID vars PID gogz (* Length of acquisi
. @ PDvars D003 tracePTDlen = 150
2 AuxVariables R Aux Variables o004

-3 Global shared
Tasks
~4+% Timed

(* Manage start requ

a
Global shared TF traceStartiog THEE
noie D:

Tasks
43 Timed

traceS(’:artAcq i=

Changing the name of the POU:
SelectaPOUfromtheprojecttreethenchoosetheappropriatevoiceofthemenu &'Project > PLC Object Properties

. Please note that the menu voice may change according to the type of the selected POU.

Duplicating a POU:

Select a POU from the project tree then choose the appropriate voice of the menu Project>Duplicate object
. Please note that the menu voice may change according to the type of the selected POU.

Enter the name of the new duplicated POU and confirm the operation.
Deleting POUs
Select a POU from the project tree then choose the appropriate voice of the menu Project>Delete Object .

Please note that the item of the sub-menu may change according to the type of the POU you have selected.
Confirm the operation to delete the POU.

SOURCE CODE ENCRYPTION/DECRYPTION

PHC Studio can encrypt POUs and protect them with a password, hiding the source code of the POU.

Encrypting a POU:

Select a POU from the project tree then choose the [Crypt] voice of the context menu

30 e walvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO
Double enter the password and confirm the operation.

Get password @

Password: |

Confirm password:

L

PHC Studio shows in the project tree a special marker icon that overlays the standard POU icon in order to in-
form the user that the POU is crypted.

Decrypting a POU:

Select a POU from the project tree then choose the [Decrypt] voice of the context menu

Encrypting all POUs:
Select the root element from the project tree then choose the [Crypt all objects] voice of the context menu.
All POUs will be encrypted with the same password.

Decrypt all POUs:

Select the root element from the project tree then choose the [Decrypt all objects] voice of the context
menu.

5.2 VARIABLES

There are two classes of variables in PHC Studio: global variables and local variables.
This paragraph shows you how to add to the project, edit, and eventually remove both global and local variables.

5.2.1 GLOBAL VARIABLES

Global variables can be seen and referenced by any module of the project.
5.2.1.1 CLASSES OF GLOBAL VARIABLES

Global variables are organized in special folders of the project tree called G1obal variables group. Those
variables are classified according to their properties as:

- Automatics: the compiler automatically allocates them to an appropriate location in the target device memory.

- Mapped: they have an assigned address in the target device logical addressing system, which shall be speci-
fied by the developer.

- Constants: are declared having the coNSTANT attribute; They cannot be written.

- Retains: they are declared having the RETAIN attribute; Their values are stored in a persistent memory area
of the target device.

5.2.1.2 CREATING A NEW GLOBAL VARIABLE

1) In order to create a new global variable you need to define almost one GTobal variables group
in your project then select it from the project tree then choose the appropriate voice of the menu
Project>New Object>New variable (see Paragraph 5.7.4).

2) PHC Studio will show you a dialog box where you must enter the name of the variable (remember that

some characters, such as '?’, ', '/, and so on, cannot be used: the variable name must be a valid IEC
61131-3 identifier).

[]
D1WWTEO6E o walvoil ::

nnnnnnnnnnn |IMoTion

PHC STUDIO

3) Specify the type of the variable either by typing it or by selecting it from the list that PHC Studio displays
when you click on the Browse button.

New variable &
Mame x— Type D
Group Ungrouped Glabal Vars Aray Ho [
Attibute AUTD It wahies [
Deseription

[Obpeet browier @
| Ottt
Maste Trpe
Frigpae [presicas W@eooL Basc bpas
Funetioe Blocks (BJ&vTE Ba: hpes
Funchions Srandand hunctions | DINT Blatic ypes
Wt Local vamsbiers TU-:URD :xw
7 LIt bpms
Liser lypes B hypes FIREAL s
] [l wISINT Basic hpas
Check & Check
[PTETI T #STRING Basie gt
d UDINT Basic byoes
Oither Hbwte: ul | UINT s e
Mare ¢ [M8 USINT B hypes
: ‘E], wiWonD Baric bges
Locetion |2 -
Lbewy | AR
Vertee (A1
Ve groe | *
0
| [

If you want to declare an array, you must specify its size.

Size of Variable [
() Sealar
© Ay / Matis

Dimenzions 4

4) You may optionally assign the initial value to the variable or to the single elements of the array.

'New wvariable g‘
Mame: % Tipe UDINT)
Group Ungrouped Global Yars Aray [0.3] [
Attribute AUTO it valuigs 141 ()
Description

L

- 5
Tnit values for: {) =)

[0.1.2.1]

%

If you create a new mapped variable, you are required to specify the address of the variable during its definition.
In order to do so, you may do one of the following actions:

- Click on the button to open the editor of the address, then enter the desired value.

(]
2 e>walvoil D1WWTEO6E

FLuIiD PowER E[MOTION

PHC STUDIO

Mapped variable declaraticn @
Mame k Data type UMDEF D
Group Ungrouped Global Yars Size Mo D
Data block D Subindex D
focaiz 1/0 data block Base addr. Size Unused
Drata block available foruser .. %MEB1.0 10000 8620
System analog inputs W0 4 4
Syatem analog outputs Zw1.0 4 4
System digital inputs 0.0 16 16
System digital outputs <00 16 18
Other data blocks

Description

p .
Variable address ﬁ
Automatic address
Size Lacation
@ Bit @ Input
() Byte (8 bi)) Output
() Wward (16 bit)) Memoary

() Double word [32 bit)

Data block Index

h

- Select from the list that PHC Studio shows you the memory area you want to use: the tool automatically cal-
culates the address of the first free memory location of that area.

5.2.1.3 EDITING A GLOBAL VARIABLE

To edit the definition of an existing global variable, open it by double-clicking it, or the folder that it belongs to,
from the project tree. The global variables editor opens and lets you modify its definition.

- 23 HMI samples

.- [[0 Function blocks

..... I-[=P Elevator

..... P Loops

= @ Elevator vars

[r] hmiAcceleration Address

Name Type
hmiActualPositi
mifctualPosition DINT %MB1.58

[7] hmiActualSpeed 1 |hmiTargetPosition

[7] hmiDeceleration 2 hmiActualPosition DINT %aMD1.62
hmiElevaterOn 3 |hmiSpeed REAL %MB1.66
hmiElevaterStanding 4 |hmiAcceleration REAL %MD1.70
|I| hmiSpeed 5 |hmiDeceleration REAL %MD1.74

Changing the name of the variable:

Select the variable you want to rename from the project tree then choose the appropriate voice of the menu
Project>View PLC Object Properties .

Duplicating a variable:

Select the variable you want to duplicate from the project tree then choose the appropriate voice of the menu
Project>Duplicate variable .

Enter the name of the new duplicated variable and confirm.

5.2.1.4 DELETING A GLOBAL VARIABLE

Select the variable you want to delete from the project tree then choose the appropriate voice of the menu
Project>Delete variable .

Confirm the operation to delete the variable.

[]
D1WWTEO6E o walvoil ::

FLUID POWER E[MOTION

PHC STUDIO

5.2.2 LOCAL VARIABLES
Local variables are declared within a POU (either program, or function, or function block), the module itself being
the only project element which can refer to and access them.
Local variables are listed in the project tree under the POU which declares them (only when that POU is open for
editing), where they are further classified according to their class (e.g., as input or inout variables).
£~ ‘=3 Function blocks
- [F]F, LinearProfileGen
-3 Input variables
[T | nomDec
Ly | stop
.| di] targPos
E--[B Local variables
-.|di| actTargPos
decel
[di| decSpace
=--[E3 Output variables
e T] acthecc
[1] actSpeed
enableQut
In order to create, edit, and delete local variables, you have to open the Program Organization Unit for editing
and use the local variables editor. The project needs to be saved in order to update the POU branch structure of
the project tree, including the changes applied to the local variables.
Project + % [F Resources % Counters and ... W LinearProfileGen % Loops vars
=] PLCProject Project Local variables
= C d
B ?___{&;r‘t::;;mt;:ars Name Type Address Array Initvalue Aftribute Description
- [E Local variables 1_|PDelay TON Auto o
ﬁ foCtd 2 |MmCtu CTU_UDINT Auto No
ﬁ fbCtu 3 |MCid CTD_UDINT Auto No
- fbDelay 4 |Tp ™ Auto No
- I foTp 5 |localFlag BOOL Auta Mo
H localFlag
..... @ Counters and timers vars
{23 HMIsamples
..... {24 Function blocks
- [E]F, LinearProfileGen
[EF, Ramp
BrEP Elevator
[EJP Loops
@) Elevator vars
..... @ Loopsvars
~E PID bTp
£ 23 Function blocks R
..... [E]F, LowPassFilter I"DLD}QI?DME - a S
#=p PidControl
F2P PidModeSelector
..... ::B-I;r:r::tants
..... [i] PIDModeAnaloglnput
..... [[i| PIDModeAutomatic
..... Iil PIDModeManual
[[i] PIDModeOff f00z foDelay
[[i] PIDModeTest inpLogicData TOH outDelayed
@ PDvars |" } N a
Aux Variables ‘ | |
Refer to the corresponding section in this manual for details (see Paragraph 6.6.1.2).
5.2.3 CREATING MULTIPLE

PHC Studio allows you to create multiple variables in one shot.
Open the POU for editing then choose the appropriate voice of the menu Variables>Create multiple .

PHC Studio will show you a dialog box where you must specify the prefix and the suffix to name of the new

variables.
1)
2)

Select the type of the variables.

value. You can see an example of th

Insert the number of the variables you want to create specifying the start index, the end index and the step

e generated variable names at the bottom of the dialog.

3 e»walvoil

FLUID POWER E[MOTION

D1WWTEOG6E

PHC STUDIO

5.3 TASKS
5.3.1 ASSIGNING A PROGRAM TO A TASK

1) Select the task where you want to add the program from the project tree then choose the [Add program]
voice of the context menu.

2) Select the program you want to be executed by the task from the list which shows up and confirm your

choice.
g B
Object browser ﬂ
Obijects filker
Marme Type
Programs Operatars [tFleooL Basic bupes
[Function Blocks [b]BYTE Basic types
Functions Standard functions [diCiMT Basic types
Wariables Local variables %DWDRD Basic types
. INT B asic types
|7 User types Basic ypes P
E' RE&L Basic types
[Check al] [Check none] [si]SINT Basic types
[stISTRING Basic types
@UDINT B asic types
Other filters [ui]umMT Basic types
Name w us|USINT Basic types
[w]wioRD Basic types
Library Al -
Il 1 b

s

L —— — |

3) The program has been assigned to the task, as you can see in the project tree.

E| Tasks

Timed
LR Elevator
{3} Background
i3 Init

m
(2

Project /= Defmiticn: Resources

[]
D1WWTEO6E o walvoil ::

FLuIiD POwWER E[MOTION

PHC STUDIO

Note that you can assign more than a program to a task. From the contextual menu you can sort and, eventu-
ally, remove program assignments to tasks.

E|---- Tasks

i3 Timed

A PidControl
=

- 4% Backgro Remove program
e ¥ Init

Move up

Move down

Project / =0 Definitions Resources

5.3.2 TASK CONFIGURATION

Depending on the target device you are interfacing with, you may have the chance to configure some of the PLC
tasks’ settings.

Select the tasks element from the project tree then choose the [Task configuration] voice of the context
menu.

Inthe Task configuration window you can edit the task execution period.

Tasks configuration =)
1D MName Type Setperiod Period (ms) Description

0 Timed — Mo 10

1 Background - No 100

2 Init — Mo 0

1 I,] C

5.4 DERIVED DATA TYPES

The Definitions section of the Workspace window lets you define derived data types.

The derived data type is a complex classification that identifies one or various data types and is made up of
primitive data types.

User has the flexibility to create those own types that have advanced properties and uses far beyond those of
the basic primitive data types.

5.4.1 TYPEDEFS

The following paragraphs show you how to manage Typedefs.
PHC Studio can manage Typedefs, Structures, Enumeration and Subranges.

In order to create, edit or delete those data types, use the Definitions section of the Worskpace window.
5.4.1.1 CREATING A NEW TYPEDEF

In order to create a Typedef select TypeDefs folder item in the Definitions tree then choose the
4 [New TypeDef] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new typedef and select the type
you are defining an alias for:

(]
3 e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

s B
New Typedef ﬁ
Mame
Type E] Init. Value D
Biray Mo E] Title
Description -
4 2
Cancel] [Ok]
L.
New Typedef | S |
Mame
- ~
Type E Object browser ﬂ
Array No) Dbjects fiter
Marne Type
Description] Pragiams Operators [tfBOOL EBasic types
["] Function Blocks [b]BYTE Basic types
Functions Standard functions [di|DINT Basic types
Wariables Local variables %DWDRD Basic types
: INT E asic types
[User types Basic types VP
7| F\EAL Easic types
[Check all] [Check none] [si]sINT Basic types
STHING Basic types
L @UDINT Basic types
Other filkers [ui]uINT Basic types
Mame u USINT Basic types
[wW|wWORD Basic types
Lacation [A" - I
Library [AII -]
Yars type [AII - I
Yarz group [* v]
4 m r
x
L.

(if you want to define an alias for an array type, you shall choose the array size).
Enter a meaningful description (optional) and confirm the operation.

5.4.1.2 EDITING A TYPEDEF

In order to edit an existing typedef you have to double-click it from the Definitions tree. The associated
editor opens and lets you modify its definition.

Definitions % [Type Definitions

(-2 PLCProject Definitions
4[] TypeDefs Name Type Array Initvalue Description

1 |UINTE_T UEINT MNa 0 8-bit

5.4.1.3 DELETING A TYPEDEF

In order to delete a Typedef select it from the Definitions tree then choose the [Delete] voice of the
context menu.

5.4.2 STRUCTURES

The following paragraphs show you how to manage structures.

[]
D1WWTEO6E o walvoil

FLuIiD POwWER E[MOTION

PHC STUDIO

5.4.2.1 CREATING A NEW STRUCTURE

In order to create a Structure select Structure folder item in the Definitions tree then choose the
[New Structure] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new structure and a meaningful
description, then confirm the operation.

-
New Structure lﬂ

Marne COMPLEX

Title Complex Mumber

Description

Complex Mumber -

4 b
Cancel] [oK

5.4.2.2 EDITING A STRUCTURE

In order to edit an existing structure, open it by double-clicking it from the Definitions tree. The associated
editor opens and lets you modify its definition and fields.

Definitions ® X| | @ Type Definitions FJ COMPLEX =
(-0 PLCProject Definitions .
[:I TypeDefs Name Pos. Type Array Initvalue
-§ UINTB_T 1 [Re 0 REAL Mo 0
Structures 2 |lm 1 REAL Mo 0

B2 COMPLEX

5.4.2.3 DELETING A STRUCTURE

In order to delete an existing structure select it from Structures folder iteminthe Definitions tree then
choose the [Delete] voice of the context menu.

5.4.3 ENUMERATIONS
The following paragraphs show you how to manage enumerations.
5.4.3.1 CREATING A NEW ENUMERATION
In order to create an enumeration select Enumerations folder item in the Definitions tree then choose

the [New Enumeration] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new enumeration and a meaning-
ful description, then confirm the operation.

New Enumeration I@
Mame HYDROCAREOM
Title
D escription
-
4 F)
Cancel] [oK }

(]
3z e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

5.4.3.2 EDITING AN ENUMERATION

In order to edit an existing enumeration, open it by double-clicking it from the Definitions tree. The associ-
ated editor opens and lets you modify its definition and the initialization values of its elements.

Definitions B %/ |l 3 HYDROCAREO. ..

== PLCProject Definitions

D T)prDEfS Mame Init value
D Structures 1 |Methane 1
: -1 Enumerations 2 |Butane 4
i i.{} HYDROCARBON 3 |Octane]

5.4.3.3 DELETING AN ENUMERATION

In order to delete an existing enumeration select it from Enumeration folder item in the Definitions tree
then choose the [Delete] voice of the context menu.

5.4.4 SUBRANGES
The following paragraphs show you how to manage subranges.

5.4.4.1 CREATING A NEW SUBRANGE

In order to create a subrange select Subranges folder item in the Definitions tree then choose the
[New Subrange] voice of the context menu.

PHC Studio will show you a dialog box where you must specify the name of the new subrange and select its

basic type.
[A
New Subrange l&]
Hame WATER_TEMPERATURE
Type [] Tite
Min. Walue an. Value
Description -
il [
Cancel] [0k J

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

New Subrange | _EE |
Mame WATER_TEMPERATURE
T ' ™y
S E Object browser ﬂ
i, Ve Objects fiter
. E Mame Tvpe
Desaifizn Programs Operators DINT Basic types
Function Blocks 5 s
Functions Standard functions SINT E asic types
“Wariables Local variables d|UDINT Basic types
7] Uszer types Basic ypes EISB\IPET EES!C :ypas
asic types
Check, all] [Check none]
Other filters
Name *
Location [All v]
Library [AII v]
“ars ype [AII v]
Warz group [" v]
< 1 5
[oee []
L.

Enter minimum and maximum values of the subrange, a meaningful description (optional), and confirm the

operation.
r ™y
New Subrange ﬁ
Marme WwATER_TEMPERATURE
Type INT [] Tite
Mir. Yalue Max. Value
Description -
4 3
Cancel] [oK
\

5.4.4.2 EDITING A SUBRANGE

In order to edit an existing subrange, open it by double-clicking it from the Subranges folder of the Defini -
tions tree. The associated editor opens and lets you modify its definition.

|Definitions 7 x| €3 HYoROCARBO... [T Subrange defi..
(== PLCProject Definitions

[TypeDefs

[C Structures

[C Enumerations

-{.} HYDROCARBON

(L1 SubRanges

\.5F WATER_TEMPERATURE

Mame Type Min Max Description
WATER_TEMPERATL INT 0 100 Temperature

5.4.4.3 DELETING A SUBRANGE

In order to delete an existing subrange select it from Subranges folder item in the Definitions tree then
choose the [Delete] voice of the context menu.

(]
o e>walvoil D1WWTEO6E

FLuIiD PowER E[MOTION

PHC STUDIO

5.5 BROWSE THE PROJECT

Projects may grow huge, hence PHC Studio provides two tools to search for an object within a project: the 0b -
ject browserandthe Find in project feature.

5.5.1 OBJECT BROWSER

PHC Studio provides a useful tool for browsing the objects of your project: the Object Browser.

Object browser lé]
Objects fiker

Mame Type =l

Programsz Operatars [] aiSetpaint Wanahles

Function Blocks [[i] achctuator ‘ariables E

Functions Standard functions [] anSystemPespanse Wariables

ariables Local variables .l: COMPLEX User Types

Vs Gas Ekdis fypes gcro Function blocks
FFCTD_DINT Function blacks

[Check all] [el e]]:E CTD_UDINT Function blocks
FFCTu Function blocks
FCTU_DINT Furiction blocks

Other filters E CTU_UDIMNT Function blocks

Name " fcruo Function blocks
L CTUD_DINT Function blocks

Lacation [A" v] ﬁ CTUD_UDINT Function blocks
i DEAD_BAND Functions

Library [A" '] [Elevatar Programs

Varstype [= &r TRiG Function blocks
LFFT_DERIY Function blocks

“ars group [x v] E FT_INT Funition blocks
EFFT_FID Function blocks =
(T b

Expart to fibrary Delete objects Open source [Select all] l Select none I

This tool is context dependent, this implies that the kind of objects that can be selected and that the available
operations on the objects in the different contexts are not the same.

Object browser can be opened in these three main ways:

- Browser mode.

- Import object mode.

- Select object mode.

User interaction with 0bject browser is mainly the same for all the three modes and is described in the
next paragraph.

5.5.1.1 COMMON FEATURES AND USAGE OF OBJECT BROWSER

This section describes the features and the usage of the 0bject browser that are common to every mode
in which Object browser can be used.

Objects filter

Obijects filter
Programs Operators
Function Blocks
Functions Standard functions
Wariables Lacal varables
Uszer types Basic types
[Check all] [Check none]

This is the main filter of the Object browser. User can check one of the available (enabled) object items.
In this example, Programs, Function Blocks, Functions are selected, so objects of this type are

[]
D1WWTEO6E o walvoil

FLUID POWER E[MOTION

PHC STUDIO

shown in the object list. Variables and User types objects can be selected by user but objects of that
type are not currently shown in the object list. Operators, Standard functions, Local vari-
ables,and Basic types cannot be checked by user (because of the context) so cannot be browsed.

User can also click Check all button to select all available objects at one time or can click Check none
button to deselect all objects at one time.

Other filters

Dther fiters
MName — *
Location [AII v]
Library [al -
Varstype [Al -
Vars group [+ -

Selected objects can be also filtered by name, symbol location, specific library and var type.
Filters are all additive and are immediately applied after setting.

Name
Function Filters objects on the base of their name.
Set of legal values All the strings of characters.

Type a string to display the specific object whose name matches the

string. Use the * wildcard if you want to display all the objects whose

. name contains the string in the Name text box. Type * if you want to
se disable this filter.

Press Enter when edit box is focused or click on the OK button near the
edit box to apply the filter.

Applies to All object types.
Object browser lﬂ
Objects fier
Marme Type

Programs Operators E cTo Function blocks
Function Elocks L CTD_DINT Function backs
Functions Standard functions FFCTO_UDINT Function blocks
“Yariables Local variables
User types Basic types
[Check al] [Check none]

Other fiters
Name chd*
Location [A" v]
Library [AII v]
Vars lype IAII ']
Wars group [" ']

(] 1]
Export to libramy Delete objects Open source [Select all] [Select none

Symbol location

Function Filters objects on the base of their location.

Set of legal values All, Project, Target, Library, Aux. Sources.

(]
2 e>walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

All= Disables this filter.
Project= Objects declared in the PHC Studio project.
Target= Firmware objects.

Use])))]))
Library= Objects contained in a library. In this case, use simultaneously
also the Library filter, described below.

Aux sources= Shows aux sources only.
Applies to All objects types.
Object browser l&]
Objects filker
Mame Type
Programs Operators [| systinaloglnputs ‘ariables
Function Blocks [l | spstinalogOutputs ‘ariables
Functions Standard functions [64F] spsDigitallnputs Variables
Variables Leea weriies spzDigitalDutputs Wariables
Weer Bl I sp:INT_TO_STRING Functions
B User ypes CHBNGEER I sysSTRCAT Functions
[Check all] [Check none] T sesTREQU Functions
@s}lsTimer Yariables
E'sysUserDalaBchk Yariables
Other filkers ® 8 TypeDataTime Uszer Types
Hame *
Location [Target v]
Library All
Wars type [AII ']
Warz group [" V]
=] 1l K]
E=part ta library Delete objects Open source [Select al] [Select nane
Library
Completes the specification of a query on objects contained in libraries.
Function The value of this control is relevant only if the Symbol Tocation

filter is setto Library.

Set of legal values

All, librarynamel, libraryname?2, ...

All= Shows objects contained in whatever library.

Use LibrarynameN= Shows only the objects contained in the library named
librarynameN.
Applies to All objects types.

o walvoil

FLUID POWER E[MOTION

PHC STUDIO

Object browser

[S5e)

Obijects filker

Mame Type
Pragrams Operatars E CTD Function blocks
unction Blocks FFCTO_DINT Function blocks
unctions Standard functions E CTD_UDIMNT Function blocks
ariables Local variables E cTu Function blacks
e s Ekdls ypes E CTU_DINT Function blocks
FFCTU_UDINT Function blocks
[Check al] [Check none] gcrup Function blocks
FFCTUD_DINT Function blocks
FFCTUD_UDINT Funition blocks
Other filters LFF_TRIG Function blocks
Name B LFR_TRIG Function blocks
fIrs Function blocks
Lacation [Library fFsh Function blocks
FFTOF Function blocks
Library [Standard 10N Function blocks
eRLES [AII &TF Function blacks

“ars group ["
[l I ™
Export ta library Delete objects Open source [Select all] [Select none
Vars Type

Function

Filters global variables and system variables (also known as firmware
variables) according to their type.

Set of legal values

All, Normal, Constant, Retain

All= Shows all the global and system variables.
Normal= Shows normal global variables only.

Use
Constant= Shows constants only.
Retain= Shows retain variables only.
Applies to Variables.

Object browser

Obijects filter

Programs Operators

unction Blocks

unclions Standard functions
‘Yariables
User types

Local variables

Basic types

[Check al] [Check none]

Other filters

Name
Location
Library

Vars twpe

[

[-

All he

Wars group Normal
Constant
Retain

Export ta library Delete objects

Mame Type il
[] aiSetpaint ariables

['i | aoctuatar ariables E
lI'aDSyslemF!asponse Yariables

®18 COMPLEX User Types

E CTD Function blocks
T CTD_DINT Function biocks
£ CTD_UDINT Furiction blocks
ﬁ CTu Function blocks
L CTU_DINT Furiction blocks
ﬁ CTU_UDINT Function blocks
Fo mplls} Function biacks
E CTUD_DINT Function blocks
E CTUD_UDINT Function blocks
& DEAD_BAMD Functions

& Elevator Programs

ﬁ F_TRIG Function blocks
L FT_DERIY Furiction blocks
FTEFT_NT Furiction blocks
FFT_PID Furiction blocks -
iE—— w

Open source [Select al] [Select none

« e>walvoil

FLUID POWER E[MOTION

D1WWTEOG6E

PHC STUDIO

Object list

Mame Type o
|I| aiSetpaoint ariables

IIl andctuator Wariables £
[T] anSystemRespanse ariables

®T5 COMPLE User Types

ﬁ cTo Function blocks
£ CTD_DINT Furiction blocks
E CTD_UDINT Function blocks
!_E CTU Funition blocks
B CTU_DINT Function blocks
£ CTU_UDINT Furiction blocks
E CTuD Funition blocks
E CTUD_DINT Function blocks
ﬁ CTUD_UDINT Function blocks
& DEAD_BAND Functions

°[Elevatar Programs
FrTRIG Function blocks
£ FT_DERIY Function blocks
FEFT_INT Function blocks
E FT_PID Function blocks -
[e — =

Object Tist shows all the filtered objects. List can be ordered in ascending or descending way by clicking
on the header of the column. So it is possible to order items by Name, Type, or Description.

Double-clicking on an item allows the user to perform the default associated operation (the action is the same
of the OK, Import object, or Open source button actions).

When item multiselection is allowed, Select all and Select none buttons are visible.

It is possible to select all objects by clicking on Select all button. Select none deselects all objects.
If at least one item is selected on the list operation, buttons are enabled.

m

ith DINT

ith

] I Select all I l Select none

Resize

Window can be resized, the cursor changes along the border of the dialog and allows the user to resize window.
When reopened, 0bject browser dialog takes the same size and position of the previous usage.

5.5.1.2 USING OBJECT BROWSER AS A BROWSER

In order to use the object browser to simply look over through the element of the project choose the appropriate
voice of the menu #Project > Object Browser .

Available objects
In this mode you can list objects of these types:

[]
D1WWTEO6E aowalvoil

FLuIiD POwWER E[MOTION

PHC STUDIO

- Programs.

- Function Blocks.
- Functions.

- Variables.

- User types.

These items can be checked or unchecked in Objects filter section to show or to hide the objects of the

chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) cannot be browsed in this
context so they are unchecked and disabled).

Available operations

Allowed operations in this mode are:

Open source, default operation for double-click on an item

Opens the editor by which the selected object was created and displays

FEA the relevant source code.
If the object is a program, or a function, or a function block, this button
opens the relevant source code editor.

Use If the object is a variable, then this button opens the variable editor.
Select the object whose editor you want to open, then click on the Open
source button.

Export to library
Function Exports an object to a library.
Use Select the objects you want to export, then press the Export to
library button.
Delete objects
Function Allows you to delete an object.
Use Select the object you want to delete, then press the Delete object

button.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

5.5.1.3 USING OBJECT BROWSER FOR IMPORT

Object browser is also used to support objects importation in the project from a desired external library.

In order to use the object browser to import external library to the project choose the appropriate voice of the
menu Project>Import object from library .

Available objects

In this mode you can list objects of these types:

- Programs.

- Function blocks.
- Functions.

- Variables.

- User types.

s e>walvoil

nnnnnnnnnnn IMoTion

D1WWTEOG6E

PHC STUDIO

These items can be checked or unchecked in Objects filter section to show or to hide the objects of the
chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) cannot be imported so they
are unchecked and disabled.

Available operations

H Import objects Enable merge method [Select all] [Select none] H

Import objects is the only operation supported in this mode. It is possible to import selected objects by
clicking on Import objects button or by double-clicking on one of the objects in the list.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

5.5.1.4 USING OBJECT BROWSER FOR OBJECT SELECTION

Object browser dialog is useful for many operations that requires the selection of a single PLC object. So Object
browser can be used to select the program to add to a task, to select the type of a variable, to select an item
to find in the project, etc..

Available objects

Available objects are strictly dependent on the context, for example in the program assignment to a task opera-
tion the only available objects are programs objects.

It is possible that not all available objects are selected by default.
Available operations

In this mode it is possible to select a single object by double-clicking on the list or by clicking on the 0K button,
then the dialog is automatically closed.

Multi selection
Multi selection is not allowed for this mode, Select all and Select none buttons are not visible.

5.5.2 SEARCH WITH THE FIND IN PROJECT COMMAND

The Find in project command retrieves all the instances of a specified character string in the project.
In order to use this functionality choose the appropriate voice of the menu % Edit > Find in project .
PHC Studio will show you the following dialog box:

r ~
Find in project @
Find what ; [EEEETRERTE E] Find
Filters
Program [¥]ariables User Types
Function blocks Description
Function Types
|| Match whole word orly
[T Match case

[]
D1WWTEO6E o walvoil ~

nnnnnnnnnnn |IMoTion

PHC STUDIO

1) Inthe Find what text box, type the name of the object you want to search.

Find in project

b=

Find what : LadderLogic

Location | Al

Filters

Program [V ariables
Function blocks Description
Fungtion Types

[Match whole word only

[] Match case

E]{

-
Object browser

Dbjects fiter

Frograms
Function Blacks

[7] Dperators

Functions [7] Standard functions

“arigbles Local wariables

User types [7] Basic types

[Check all] l Check none]
Other filters

Name ®

Library Standard h

Wars gioup

|

MName Type Description
E CTD Function blacks Drawin counter
FFCTO_DINT Function blocks Dowen counter with DINT data type

_| unction blocks o counter witk ata type
CTD_UDINT Fi block. o] h DINT d
unction blocks b counter
cTu Function block; u
| unction blocks p counter witt Jata type
CTU_DINT Fi block: u h DINT d
| unction blacks b cauntsr wil ata type
CTU_UDINT Function block; u th LIDINT d
unction blocks p/dovin counter
CcTuD Fi block: Updd:
'_| unction blocks p/down counter wit ata type
CTUD_DINT Function black: Up/d: ith DINT d
| unction blocks p/down counter wit lata ty.
CTUD_UDINT Function block; Updd: ith UDINT d.
FFF_TRIG Function blocks Falling edge detectar
FFR_TRIG Function blocks Rizing edge detector
unction blocks istable, reset dominant
RS Fi block: Bistabl d
unction blocks istable, sat dominant
SR Function block; Bistabl di
unction blocks
TOF Fi block:

(Off-delay timer

e TOM On et
TP Function blocks Pulse

Otherwise, click the Browse button to the right of the text box, and select the name of the object from
the list of all the existing items.

2) Select one of the values listed in the Locat i0on combo box, so as to specify a constraint on the location
of the objects to be inspected.

Find in project

=)

Find what : LadderLogic

) Che]

Location | All

Filters Project

 Target
Frogre Library

Functiy s, S0urces r .

- Cancel

User Types

Function Types

[Match whale waord only
[Match case

3) The frame named Filters contains 7 checkboxes, each of which, if ticked, enables research of the
string among the object it refers to.

4) Tick Match whole word only if you want to compare your string to entire word only.

5) Tick Match case if you want your search to be case-sensitive.

6) Press Find to start the search, otherwise click Cancel to abandon.

Find in project

)

Find what : Ral]

] Find

Location [AII

) Co=d)

Filters

Frogram
Function blocks
Function

Wariables
Description
Tupes

Match whale waord only
Match caze

User Types

L

4

The results will be printed in the Find in project tab of the Qutput window.

2 e>walvoil

FLuIiD PowER E[MOTION

D1WWTEOG6E

PHC STUDIO

5.6

o002
foDelay
inpLogicData outDelayed
Prme:t =0 Definitions Rescurces
Output 7 x| [Library [}
Searching for 'TON Type Group Description -
fbDelay (Type) - TOH Function Arithmetic Abso\utavaluetumputastl-
1 oocurrence(s) have been found. L] ACOS Function Arithmetic Arc cosine Computes the p
Operator Arithmetic Arithmetic addition
Operator Standard Address of
Operator Logic Logical/bitwise AND
Function Arithmetic Arc sine Computes the prir *
i | v
4l Find in project A Debua)\ Resaurces /' Operator and standard blocks ‘ Target variables)\ Target blocks) Pid | Standard |

WORKING WITH PHC STUDIO EXTENSIONS

PHC Studio’s Workspace window may include a section whose contents completely depend on the target de-
vice the IDE is interfacing with: the Resources panel.

If the Resources panel is visible, you can access some additional features related to the target device (con-
figuration elements, schemas, wizards, and so on).

Resources rx
= Configuration
=l VP100
BE Local /O Mapping
9;; Fieldbus configuration
= /O module
&2 /0 module
1/0 module
170 module

Project’, o Definitions Resources

Information about these features may be found in a separate document: refer to your hardware supplier for
details.

D1WWTEOG6E

o walvoil -

FLuIiD POwWER E[MOTION

PHC STUDIO

5.7 PROJECT CUSTOM WORKSPACE

The custom workspace functionalities allow you to organize your project tree according to your needs, in order
to obtain more efficiency in the management of the project.

All organizationals units of the custom workspace are logical: creating and editing those units will no triggers
any effects on the PLC code.

Project o x

= =4 Counters and timers

LgtP LadderLogic

Counters and timers params
[[i] parCtDownPreset

[[i] parCtUpPreset
parPulseValue
parPulseWidth
parTimOnDelay
parTimOnValue

55 PID
-3 Function Blocks
L] [EF; LowPassFilter
...... B=P PidControl
....... E‘ﬁ P PidModeSelector
S @ PID hmi
: hmiPidTest
[0] hmiPIDThreshold

@ PidControl
..... I PidModeSelector
98 Slow

Project / = Definitions Resources

5.7.1 ENABLE THE CUSTOM WORKSPACE INTO AN EXISTING PROJECT

To enable this feature see the Project>Options... (see Paragraph 4.6.1), once enabled the project needs to
be reloaded.

By default this features is enabled depending on targets.

5.7.2 WORKSPACES MIGRATION

Whenever this feature is switched, PHC Studio tries to reorder the workspace maintaining the user customiza-
tion by this logic:
Static (old) workspace to custom (new)

Fixed logic units (Ex. Function blocks folder) are converted into new dynamic folders with the same names.
Fixed global group units (Ex. Mapped variables) are converted into new global dynamic groups with the same
names. All global variables that do not belong to any group will be grouped into a new group called Ungrouped
global vars.

Custom (new) workspace to static (old)

All custom units will be destroyed and all POUs and global variables will be grouped into the default fixed units
(Ex. Function blocks folder and Mapped Variables).

(]
50 @ walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

5.7.3 CUSTOM WORKSPACE BASIC UNITS

In the new custom workspace you can work using two different main logic units:

- Folder: this is an optional logical unit that can contain POUSs, folders (you can nest folders into another one)
and global variables group.

(=

- Global variables group: this is a mandatory logical unit that can only contain global variables. In
order to create a global variable you need to have almost one global variables group defined into your custom
workspace.

[

5.7.4 CUSTOM WORKSPACE OPERATIONS

Different useful operations can be performed in order to give a better organization of your project.
Creating a folder

In order to create a folder select the root item of the project tree or, if you want to nest it, an
existing folder then choose the [Add>New folder] voice of the context menu.

This operation adds a new customizable folder (by default named New folder) unit ready to be
renamed.

Creating a Global variables Group

In order to create a global variables group select the root item of the project tree or, if you want to nest it, an
existing folder the [Add>New global variables group] voice of the context menu.

This operation adds a new customizable folder (by default named New var group) unit ready to be renamed.

Rename a unit (folder or Global variables group)

In order to rename a global variables group or a folder select it than choose [Rename] voice of the context
menu.

This operations makes the name of the unit ready to be renamed.

Deleting a unit (folder or Global variables group)

In order to delete a global variables group or a folder select it than choose [Delete] voice of the context menu.
If the units contains any child you will be prompted for three possibilities:

1) Delete all child elements too (this may impact the PLC).

2) Do not delete child elements, they will be moved upwards following the project tree.

3) Cancel the operations and do nothing.

Export all children to library

In order to export all elements of a global variables group or a folder select it than choose
[Export all children to library] voice of the context menu.

This operation allows you to export recursively all child elements of the selected item into a library (see 4.8.2
for more information about new library).
Moving Unit

You can simply drag&drop units to a different location of the tree in order to organize your project workspace.
All children are moved if the parent item is moved, following the original structure.

Moving variables is also possible both from project tree (single selection) and from the variable grid (single and
multiple selections) (see Paragraph 6.6 for more information about variables editor).

[]
D1WWTEO6E o walvoil s:

nnnnnnnnnnn |IMoTion

PHC STUDIO

5.7.5 WORKSPACE ELEMENTS WITH LIMITATIONS

Some elements of the workspace are fixed and not customizable. They are automatically generated by PHC Studio
and no special custom operations are allowed on.

Root Project Element

You can not move, rename or delete this element. It can contain customizable units as children.

POUs Children EIments

These elements are generated following the structure of the POU they belong to. You can not move, rename or
delete these elements directly from the tree. For more information about POUs (see Paragraph 5.1).

SFC Children Elements

These elements follow the aforesaid rules but especially for the SFC children nodes the rename or delete opera-
tions are not allowed also on the POUs that belong to Actions or Transitions elements. For more information
about SFC language (see Paragraph 6.5).

Aux Variables Element

You can not move, rename or delete this element and his children. They are automatically generated by
PHC Studio.

Tasks Element

You can not move, rename or delete these elements. They are automatically generated by PHC Studio. For more

information about SFC language (see Paragraph 5.3).

(]
52 ewalvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

6. EDITING THE SOURCE CODE

PLC editors

PHC Studio includes five source code editors, which support the whole range of IEC 61131-3 programming lan-
guages: Instruction List (IL), Structured Text (ST), Ladder Diagram (LD), Function Block Diagram (FBD), and
Sequential Function Chart (SFC).

Moreover, PHC Studio includes a grid-like editor to support the user in the definition of variables.

All editors, both graphical and text one, support tooltips. By enabling them (see Paragraph 3.6.1.4), PHC Studio
will show some information about symbols on which the user move the mouse.

This chapter focuses on all these editors.

6.1 INSTRUCTION LIST (IL) EDITOR

nool ML =v=Ig
nooz SHE lo#04
noo3 ADD addIgSag
noo4

oons ML =w=Ig
000& SHE 1e#04
noo? ADD addIgSg

The IL editor allows you to code and modify POUs using IL (i.e., Instruction List), one of the IEC-compliant
languages.

6.1.1 EDITING FUNCTIONS

The IL editor is endowed with functions common to most editors running on a Windows platform, namely:
- Text selection.

- & Edit>Cut .

- Edit>Copy .

@ Edit>Paste .

Edit>Replace .

- Drag-and-drop of selected text.

6.1.2 REFERENCE TO PLC OBJECTS

If you need to add to your IL code a reference to an existing PLC object, you have two options:
- You can type directly the name of the PLC object.

- You can drag it to a suitable location. For example, global variables can be taken from the Workspace win-

dow, whereas standard operators and embedded functions can be dragged from the Libraries window,
whereas local variables can be selected from the local variables editor.

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

6.1.3

6.1.4

6.1.4.1

6.1.4.2

6.1.4.3

6.2

6.2.1

6.2.2

AUTOMATIC ERROR LOCATION

The IL editor also automatically displays the location of compiler errors. To know where a compiler error oc-
curred, double-click the corresponding error line in the Qutput bar.

BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a bookmark is set, you can
use a keyboard command to move to it. You can remove a bookmark when you no longer need it.

SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press Ctr 1+ FZ2. The line is marked
in the margin by a light-blue circle.

oo2g
0029
0030

JUMPING TO A BOOKMARK
Press FZ repeatedly, until you reach the desired line
REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctri+ F2.

STRUCTURED TEXT (ST) EDITOR

000l ~
oooz2 IgDW := =v=lg = =y=lg

0003 addIgSg := addIgSg + SHRE(IgDW. le#04)

o004

a00s IdDVW := =y=Id *® =y=sId ;

0006 addIdSg = addIdSg + SHR{ IdDW, 16#04) ;

o007

0008 IF a » b THEN

o009 a 1= o

0010 n = a*®hb =

0011 END _IF;

oo12

0013 ™
1' ¥

The ST editor allows you to code and modify POUs using ST (i.e. Structured Text), one of the IEC-compliant
languages.

CREATING AND EDITING ST OBJECTS

See the Creating and Editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

EDITING FUNCTIONS

The ST editor is endowed with functions common to most editors running on a Windows platform, namely:
- Text selection.

- & Edit>Cut .

- Edit>Copy

- [@ Edit>Paste .

- Edit>Replace .
- Drag-and-drop of selected text.

5« @ uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

6.2.3 REFERENCE TO PLC OBJECTS

If you need to add to your ST code a reference to an existing PLC object, you
have two options:

- You can type directly the name of the PLC object.

- You can drag it to a suitable location. For example, global variables can be taken from the Workspace win-

dow, whereas embedded functions can be dragged from the Libraries window, whereas local variables
can be selected from the local variables editor.

6.2.4 AUTOMATIC ERROR LOCATION

The ST editor also automatically displays the location of compiler errors. To know where a compiler error has
occurred, double-click the corresponding error line in the Output bar.

6.2.5 BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a bookmark is set, you can
use a keyboard command to move to it. You can remove a bookmark when you no longer need it.

6.2.5.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press Ctr 1+ F2. The line is marked
in the margin by a light-blue circle.

ooz2a
IMEEI]
0030

6.2.5.2 JUMPING TO A BOOKMARK
Press FZ repeatedly, until you reach the desired line.
6.2.5.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctri+F2.

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

6.3

6.3.1

6.3.2

LADDER DIAGRAM (LD) EDITOR

0003
foTp
flagEnable inpLogicData inpLogicData2 T outPulse
| |] |] !
I 1T 1T IN a i,
inpLogicDatat outCountUp
| hmiPulseWidth hmiPulseValue
o004
foDelay
inpLogicData TON outDelayed
[} N Q {
hmiTimOnDelay hmiTimOnValue

The LD editor allows you to code and modify POUs using LD (i.e. Ladder Diagram), one of the IEC-compliant
languages.

CREATING A NEW LD DOCUMENT

See the Creating and Editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

ADDING/REMOVING NETWORKS

Each POU coded in LD consists of a sequence of networks. A network is defined as a maximal set of intercon-
nected graphic elements. The upper and lower bounds of every network are fixed by two straight lines, while
each network is delimited on the left by a grey raised button containing the network number.

0001

On each LD network the right and the left power rail are represented, according to the LD language indication.

On the new LD network a horizontal line links the two power rails. It is called the “power link”. On this link, all
the LD elements (contacts, coils and blocks) have to be placed.

You can perform the following operations on networks:
- To add a new blank network, click Scheme>Network>New , or press one of the equivalent buttons in the
Network toolbar.

- To assign a label to a selected network, give the : Scheme>Network>Label . This enables jumping to the
labeled network.

- To display a background grid which helps you to align objects, click [View>Grid .
- To add a comment, click &4 Scheme>0Object>New Comment .

56 @ uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

6.3.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which transfers the program
control to a labeled network. To assign a label to a network, double-click the raised grey button on the left, which
bears the network number.

This causes a dialog box to appear, where you can type the label you want to associate with the selected net-
work.

Netwark label [

Mew network |abel 7

Labetd —

0002

If you press 0K, the label is printed in the top left-hand corner of the selected network.

LabelX:

7 ?

f =

6.3.4 INSERTING CONTACTS

To insert new contacts on the network apply one of the following options:

- Select a contact, a block, a pin of block, or a connection point, that will act as the insertion point. Insert
the new contact choosing between the connection type (serial or parallel) and choosing the position (before
or after the currently selected object) by using the | Sheme>Object>New . For serial insertion, the new
contact will be inserted on the left or right side of the selected contact/block or in the middle of the selected
connection depending on the element selected before the insertion. For parallel insertions, several contacts
can be selected before performing the insertion; the new contact will be inserted above or below the group
of selected contacts.

oo
— cnl 7
it —
001 001
cnl cn cnl 7 cn
— P — —
1t
cn2 cn2
— —
ool 0001
timer1 timerd
TON
EN
1t I E—
=—PT

[]
D1WWTEO6E o walvoil -

nnnnnnnnnnn [MoTian

PHC STUDIO

Co0 cn cnl
I
cn enl
- B)
0001
oot cn cnl cn2
1 . —
|cn}—{cr| cn| 7
T —
cnd cnd
.,
_‘cn?: cnd

- Drag a boolean variable to the desired place over an object. For example, global variables can be taken from

the Workspace window, whereas local variables can be selected from the local variables editor. Contacts
inserted with drag and drop will always be inserted in series after the destination object.

6.3.5 INSERTING COILS

To insert new coils on the network apply one of the following options:

- Click {} Scheme>0Object>New>Coil . The new coil will be inserted and linked to the right power rail. If
other coils, return or jumps are already present in the network, the new coil will be added in parallel with the
previous ones.

- Drag a boolean variable on the network, over an existing output of the network (coil, return, jump). For ex-

ample, global variables can be taken from the Workspace window, whereas local variables can be selected
from the local variables editor.

6.3.6 INSERTING BLOCKS

To insert blocks on the network apply one of the following options:

- Select a contact, connection or block then click | # Scheme>Object>New>Block , which causes a dialog
box to appear listing all the objects of the project, then choose one item from the list.

- Drag the selected object (from the Workspace window, the Libraries window or the local variables
editor) over the desired connection.

If the object has at least one BOOL input and one BOOL output pins, they will be connected to the power link

(and it will possible to add EN/ ENO pins later with the provided command); otherwise the EN/ ENQ pins will
be automatically added.

Operators, functions and function blocks can only be inserted into an LD network on the main power link, or on
the power link of a branch (so they can not be inserted on the parallel of a contact); it is also not possible to
create a contact in parallel of a block.

If a block has a BOOL input pin, it is possible to create another logical sub-network of contacts and blocks before
it; otherwise, you can connect only variables, constants or expressions (that nevertheless can be connected to

BOOL pins) to non-BOOL input pins.

(]
52 @ Wwalvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

6.3.7

6.3.8

6.3.9

EDITING COILS AND CONTACTS PROPERTIES

The type of a contact (normal, negated, positive, negative) or a coil (normal, negated, set, reset, positive, nega-
tive) can be changed by one of the following operations:

Double-click on the element (contact or coil).

Select the element and then press the Enter key.

- Select the element, activate the pop-up menu, then select & [Properties] .

An apposite dialog box will appear. Select the desired element type from the presented list and then press OK.

Otherwise, select the desired contact or coil, and change its type using the six provided buttons in the LD toolbar
or the six commands in the Scheme menu.

EDITING NETWORKS

The LD editor is endowed with functions common to most graphic applications running on a Windows platform,
namely:

Selection of a block.

Selection of a set of adjacent contacts by pressing Ctrl+Left button on each contact to select; if the
selection spans across different parallel branches, more contacts will be automatically added in the selection.

% Edit>Cut , Edit>Copy , @ Edit>Paste operations of a single block as well as of a set of blocks.

Drag-and-drop of the selected object or group, to move it inside or outside the current network.

Adding, moving, deleting or copy/pasting objects will automatically recalculate the layout of the network ob-
jects; because of this, it is not possible to manually “draw” connection lines or freely placing objects without
connecting them to the network.

MODIFYING PROPERTIES OF BLOCKS

- Click ¥ Scheme>Increment pins , to increment the number of input pins of some operators and embed-

ded functions.

K
(1]

MUX

EN/ ENO pins can be removed only if the selected block has at least one BOOL input and one BOOL output;
otherwise, they will be automatically added when creating the block and it will not be possible to remove them

(the Enable EN/ENO pins command will be disabled).

If a block has more than one BOOL output pin, it is possible to choose which pin will bring the S7gna I out of the
block and so continue the power link: select the desired output pin and click the E© Scheme>Set output line

menu command.

- Click # Scheme>O0Object>Instance name , to change the name of an instance of a function block.

D1WWTEOG6E

o walvoil -

nnnnnnnnnnn |IMoTion

PHC STUDIO

6.3.10 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an LD document, by selecting it and then perform-
ing one of the following operations:

- click ¥ Scheme>0bject>0pen source , to open the source code of a block.

- Click & Scheme>O0Object properties in the menu, to see properties and input/output pins of the selected
block.

6.3.11 AUTOMATIC ERROR RETRIEVAL

The LD editor also automatically displays the location of compiler errors. To reach the block where a compiler
error occurred, double-click the corresponding error line in the Output bar.

6.3.12 INSERTING VARIABLES

To connect a variable to an input or output pin of a block apply one of the following options:
- select the pin of a block, and then click the B Scheme>Object>New>Variable menu command; then
double-click the new variable object (or press ENTER) and enter the variable name.

- Drag the selected variable (from the Workspace window, the Libraries window or the local variables
editor) over the desired pin of a block.

6.3.13 INSERTING CONSTANTS

To connect a numeric constant to an input pin of block, select the pin and click the
B Scheme>O0bject>New>Constant menu command; then double-click the new constant object (or press

ENTER) and enter the numeric constant value.

6.3.14 INSERTING EXPRESSION

To connect a complex expression to an input pin of block, select the pin and click the
@ Scheme>O0bject>New>Expression menu command; then double-click the new expression object (or

press ENTER) and enter any ST expression:

(at+tb) *c
TO_INT (n)

ADR (x)

(]
0 e>walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

6.3.15

6.3.16

0005
ADD 5
EN ENO {
+
=
COMMENTS

It is possible to insert two types of comments:

- network comments: activate the network by clicking on the header on the left or inside the grid (but with-

out selecting any object), and then click the &4 Scheme>Object>New>Comment menu command. The
network comment will be displayed at the top of the network, and if necessary will be expanded to show all
the text lines of the comment.

Object comments: they are activated with the apposite menu command in
View>Show comments for objects ; above any contact, function block or coil the description of the as-

sociated PLC variable (if present) will be initially shown, but with the Comment command you can modify it
to enter a specific object comment that will override the PLC variable description.

PHC STUDIO

0003 This iz a network comment,
that can span muftiple ines
Comment for timer .
Enable flag timer1 Comment for the coil
enablel TON out1
[N 4 {)
BRANCHES

The main power line can be branched to create sub-networks, that can be further branched themselves: to add a
branch, selectthe objectafteryouwanttocreatethebranchandthenclickthe T Scheme>Object>New>Branch

menu command.

The start of the new branch is marked as a big dot on the source line; deleting all objects on a branch deletes

the branch itself.

Selecting an object on a branch effectively selects the branch, so for example selecting a contact on a branch
and then clicking the {} Scheme>Object>New>Coil adds the coil on the branch instead of adding it on the

main power line.

D1WWTEOG6E

o walvoil -

nnnnnnnnnnn |IMoTion

PHC STUDIO

6.4

6.4.1

6.4.2

0005
cn cnl x
— | i {
¥
—
0008
cn cni X
— | || {
¥
—
? ?
{

FUNCTION BLOCK DIAGRAM (FBD) EDITOR

PID regulator

fbPid

PID regulation is OK if target is inside threshold

LE
E outPidOk

FT_PID
(e facha) =R
EEeeot > fsgom
e il R
Jotiset oveston| D)
«{ manual_in
=4 manual
(T S |
(G001 band
i S —— |
[z S
) e 14
o lmit_L
o limit_H

The FBD editor allows you to code and modify POUs using FBD (i.e. Function Block Diagram), one of the IEC-

compliant languages.

CREATING A NEW FBD DOCUMENT

See the Creating and editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

ADDING/REMOVING NETWORKS

Every POU coded in FBD consists of a sequence of networks. A network is defined as a maximal set of intercon-
nected graphic elements. The upper and lower bounds of every network are fixed by two straight lines, while
each network is delimited on the left by a grey raised button containing the network number.

0006

2 e walvoil

uuuuuuuuuuu [MoTionN

D1WWTEOG6E

PHC STUDIO

You can perform the following operations on networks:
- To add a new blank network, click Scheme>Network>New .

- To assign a label to a selected network, give the Scheme>Network>Label command. This enables jump-
ing to the labeled network.

- To display a background grid which helps you to align objects, click View>View greed .
- To add a comment, click &4 Scheme>Object>New>Comment .

6.4.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which transfers the program
control to a labeled network. To assign a label to a network, double-click the raised grey button on the left, that
bears the network number.

This causes a dialog box to appear, which lets you type the label you want to associate with the selected network.

N
Network label ==

Mew network label
Label

=

If you press 0K, the label is printed in the top left-hand corner of the selected network.

| abelX:

6.4.4 INSERTING AND CONNECTING BLOCKS

This paragraph shows you how to build a network.
Add a block to the blank network, by applying one of the following options:

- Click ® Scheme>O0bject>New>Function Block which causes a dialog box to appear listing all the objects
of the project, then choose one item from the list. If the block is a constant, a return statement, or a jump

statement, you can directly press the relevant buttons in the FBD toolbar.

- Drag the selected object to the suitable location. For example, global variables can be taken from the Work -
Space window, whereas standard operators and embedded functions can be dragged from the Libraries
window, whereas local variables can be selected from the local variables editor.

Repeat until you have added all the blocks that will make up the network.

Then connect blocks:

- Click «* Edit>Connection mode , or simply press the space bar of your keyboard. Click once the source
pin, then move the mouse pointer to the destination pin: the FBD editor draws a logical wire from the former
to the latter.

- If you want to connect two blocks having a one-to-one correspondence of pins, you can enable the auto con-
nection mode by clicking kn Scheme>Auto connect . Then take the two blocks, drag them close to each
other so as to let the corresponding pins coincide. The FBD editor automatically draws the logical wires.

[]
D1WWTEO6E o walvoil s

sssssssssss [MoTian

PHC STUDIO

Block1

Block1 Block1

VectorBy Scalar

al Wil 1]

TRBR

If you delete a block, its connections are not removed automatically, but they become invalid and they are re-
drawn red. Click Scheme>Delete invalid connection .

6.4.5 EDITING NETWORKS

The FBD editor is endowed with functions common to most graphic applications running on a Windows platform,
namely:

- Selection of a block.

- Selection of a set of blocks by pressing Sh7ft + left button and by drawing a frame including the blocks to
select.

- & Edit>Cut , Edit>Copy , @ Edit>Paste operations of a single block as well as of a set of blocks.
- Drag-and-drop.

6.4.6 MODIFYING PROPERTIES OF BLOCKS

- Click *1 Scheme>Increment pins , to increment the number of input pins of some operators and embed-
ded functions.

MUX MUX

TON
EN ENC
E
%T'; 1M Q
PT ET

- Click Scheme>Object>Instance name , or click Scheme>O0Object properties , to change the name
of an instance of a function block.

6.4.7 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an FBD document, by selecting it and then perform-
ing one of the following operations:

- Click #8 Scheme>O0Object>0Open source , to open the source code of a block.
- Click # Scheme>Object properties , to see properties and input/output pins of the selected block.

6.4.8 AUTOMATIC ERROR RETRIEVAL

The FBD editor also automatically displays the location of compiler errors. To reach the block where a compiler
error occurred, double-click the corresponding error line in the Qutput bar.

(]
« e>walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

6.5 SEQUENTIAL FUNCTION CHART (SFC) EDITOR

The SFC editor allows you to code and modify POUs using SFC (i.e. Sequential Function Chart), one of the IEC-
compliant languages.

6.5.1 CREATING A NEW SFC DOCUMENT
See the creating and editing POUs section (see Paragraphs 5.1.1 and 5.1.2).

6.5.2 INSERTING A NEW SFC ELEMENT

- Click @ Scheme>Object>New>Step .

- Click ¥ Scheme>Object>New>transition .
- Click = Scheme>Object>New>Jump .

In either case, the mouse pointer changes to:

%E:l for steps;

[:] for transitions;

b

6.5.3 CONNECTING SFC ELEMENTS

¥ for jumps.

Follow this procedure to connect SFC blocks:

- Click « Edit>Connection mode , or simply press the space bar on your keyboard. Click once the source
pin, then move the mouse pointer to the destination pin: the SFC editor draws a logical wire from the former
to the latter.

- Alternatively, you can enable the auto connection mode by clicking kn Scheme>Auto connect Then take
the two blocks, and drag them close to each other so as to let the respective pins coincide, which makes the
SFC editor draw automatically the logical wire.

6.5.4 ASSIGNING AN ACTION TO A STEP
This paragraph explains how to implement an action and how to assign it to a step.

6.5.4.1 WRITING THE CODE OF AN ACTION

To start implementing an action, you need to open an editor. Do it by applying one of the following procedures:
- Click & Scheme>Code object>New action .

- Right-click on the name of the SFC POU in the Workspace window ia [New action] .

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

In either case, PHC Studio displays a dialog box like the one shown below.

- B
SFC code type ﬂ
) FBD
@ LD
B ST
@ SFC
Mame
h

Select one of the languages and type the name of the new action in the text box at the bottom of the dialog box.
Then either confirm by pressing OK, or quit by clicking Cancel.

If you press 0K, PHC Studio opens automatically the editor associated with the language you selected in the
previous dialog box and you are ready to type the code of the new action.

Note that you are not allowed to declare new local variables, as the module you are now editing is a component
of the original SFC module, which is the POU where local variables can be declared. The scope of local variables
extends to all the actions and transitions making up the SFC diagram.

6.5.4.2 ASSIGNING AN ACTION TO A STEP

When you have finished writing the code, double-click the step you want to assign the new action to. This causes
the following dialog box to appear.

i y
SFC Action Properties ﬂ
Test 2
Coden
Mo code]

[] end_Manual

AnalogInputMode

Mame Te AutoModeInit
Idle

Comment o
Setpoint10Megative -
Setpoint 10Positive
TestModeInit

From the list shown in the Code N box, select the name of the action you want to execute if the step is active.

You may also choose, from the list shown in the Code P (Pulse) box, the name of the action you want to
execute each time the step becomes active (that is, the action is executed only once per step activation, regard-

less of the number of cycles the step remains active). Confirm the assignments by pressing OK.
In the SFC schema, action to step assignments are represented by letters on the step block:

- action N by letter N in the top right corner;

- action P by letter P in the bottom right corner.

I
Test 2
AutoModeinit[P]
Setpoint! ONegative[N]

[[] end_Manual

(]
s e walvoil D1WWTEO6E

uuuuuuuuuuu [MoTionN

PHC STUDIO

6.5.5

6.5.6

6.5.6.1

If later you need to edit the source code of the action, you can just double-click these letters. Alternatively, you
can double-click the name of the action in the Act70ns folder of the Workspace window.

SPECIFYING A CONSTANT/A VARIABLE AS THE CONDITION OF A TRANSITION

As stated in the relevant section of the language reference, a transition condition can be assigned through a con-
stant, a variable, or a piece of code. This paragraph explains how to use the first two means, while conditional

code is discussed in the next paragraph.

First of all double-click the transition you want to assign a condition to. This causes the following dialog box to

appear.

-

SFC Transition Properties

==

Y alue
Wigible
1 True
() False
@ Varigble hmiPidT est

) Code [Mo code]

(]

e

Select True if you want this transition to be constantly cleared, FalSe if you want the PLC program to keep

executing the preceding block.

Instead, if you select VariabTle the transition will depend on the value of a Boolean variable. Click the cor-
responding bullet, to make the text box to its right available, and to specify the name of the variable.

To this purpose, you can also make use of the objects browser, that you can invoke by pressing the Browse

button shown here below.

Click OK to confirm, or Cancel to quit without applying changes.

ASSIGNING CONDITIONAL CODE TO A TRANSITION

]

This paragraph explains how to specify a condition through a piece of code, and how to assign it to a transition.

WRITING THE CODE OF A CONDITION

Start by opening an editor, following one of these procedures:

- Click % Scheme>Code object>New transition .

- Right-click on the name of the SFC POU in the Workspace window % [New transition] .
In either case, PHC Studio displays a dialog box similar the one shown in the following picture.

D1WWTEOG6E

o walvoil -

nnnnnnnnnnn |IMoTion

PHC STUDIO

- B
SFC code type Iﬂ
L
|
() FBD
LD
@®sT
@ SFC
Mame
-

Note that you can use any language except SFC to code a condition. Select one of the languages and type the
name of the new condition in the text box at the bottom of the dialog box. Then either confirm by pressing 0K,

or quit by clicking Cancel.

If you press OK, PHC Studio opens automatically the editor associated with the language you selected in the

previous dialog box and you can type the code of the new condition.

Note that you are not allowed to declare new local variables, as the module you are now editing is a component
of the original SFC module, which is the POU where local variables can be declared. The scope of local variables

extends to all the actions and transitions making up the SFC diagram.

6.5.6.2 ASSIGNING A CONDITION TO A TRANSITION

When you have finished writing the code, double-click the transition you want to assign the new condition to.

This causes the following dialog box to appear.

yoint inpAutomatic [F‘ hmiPidTest
s ~
Auto_Phase_0 SFC Transition Properties * I&J
Autolodenit[P]
Setpoint10Postive [N] Vel
isible
end_AutoPhasel
©) False
Auto_Phase_1 () Wariable B
Setpoint 10N agatweIE @ Code end_sutoPhasel 4
[Mo code]
L end_Analog
end_Autarnatic
[] end_AutoPhaset end_A end_autoPhazel estPhasel
end_AutoPhasel
Auto_Phase 0 Init nd_TeslhaseD
end_TestPhazel
end_TestPhaze2 BIE

Select the name of the condition you want to assign to this step. Then confirm by pressing OK.

If later you need to edit the source code of the condition, you can double-click the name of the transition in the

Transitions folder of the Workspace window.

s @ uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

6.5.7 SPECIFYING THE DESTINATION OF A JUMP

To specify the destination step of a jump, double-click the jump block in the Chart area. This causes the dialog
box shown below to appear, listing the name of all the existing steps. Select the destination step, then either

press 0K to confirm or Cancel to quit.

L X
SFC Jump properties ﬁ

Analog_setpoint]9
Auto_Phaze 0

Auto_Phaze_1
it

b anual_setpaint
Test_Phaze_0
Test_Phaze_1
Te:t_Phaze_2

6.5.8 EDITING SFC NETWORKS

The SFC editor is endowed with functions common to most graphic applications running on a Windows platform,
namely:

- Selection of a block.

- Selection of a set of blocks by pressing Ctri1 + left button.

- & Edit>Cut , Edit>Copy , @ Edit>Paste operations of a single block as well as of a set of blocks.
- Drag-and-drop.

6.6 VARIABLES EDITOR

PHC Studio includes a graphical editor for both global and local variables that supplies a user-friendly interface
for declaring and editing variables: the tool takes care of the translation of the contents of these editors into
syntactically correct IEC 61131-3 source code.

As an example, consider the contents of the Global variables editor represented in the following figure.

Name Type Address Group Array Init value Aftribute Description
1 |pidkP REAL %MD1.0 FID Mo PID proporional gain
2 |pidKl REAL %MD 1.4 FID Mo FID integral time
3 |pidSetpoint REAL %MB1.8 FID Mo PID setpoint (from -1 to +1)
4 | pidQutput REAL %MD1.12 PID Mo PID output value

The corresponding source code will look like this:

VAR GLOBAL
gA : BOOL := TRUE;
gB : ARRAY[0..4] OF REAL;
gC AT %MD60.20 : REAL := 1.0;
END VAR
VAR GLOBAL CONSTANT
gb : INT := -74;
END VAR

[]
D1WWTEO6E o walvoil -

nnnnnnnnnnn |IMoTion

PHC STUDIO

6.6.1
6.6.1.1

6.6.1.2

OPENING A VARIABLES EDITOR

OPENING THE GLOBAL VARIABLES EDITOR

E|-- PleProject Project

E|-- PlcProject Project

OPENING A LOCAL VARIABLES EDITOR

3

Automatic variables

Mapped variables
Constants
i)l Retain variables
- 28 Tasks

Automatic vanables

Mapped variables

Constants

Retain variables
28 Tasks

EI-- PlcProject Project

: B pidControl
ff, PidModeSelector

2B Tasks

In order to open the Global variables editor, double-click on G1obal variables in the project tree.

Global variables
Mame Type Addr
1 parCtDownPreset UDIMT Auto
2 |parCtUpPreset UDIMT Auto
3 |parPulseValue UDIMT Auto
4 |parPulseWidth UDINT Auto
5 |parTimOnDelay UDINT Auto
6 |parTimOnValue UDIMT Auto
7 |pidKD REAL Auto
8 |pidKl REAL BaMD

ettp

Type
TON

Addr
Auto

CTU_UDINT Auto
CTD_UDINT Auto

1
UDINT

Auto
Auto

To open a local variables editor, just open the Program Organization Unit the variables you want to edit are local
to.

70 eswuwalvoil

nnnnnnnnnnn [MoTionN

D1WWTEOG6E

PHC STUDIO

6.6.2 CREATING A NEW VARIABLE
In order to create a new variable, you may click :[d Variables>Insert .
6.6.3 EDITING VARIABLES
Follow this procedure to edit the declaration of a variable in a variables editor (all the following steps are optional

and you will typically skip most of them when editing a variable):
1) Edit the name of the variable by entering the new name in the corresponding cell.

Mame Type Address
1 REAL %NMD1.0 |
2 |pidki REAL %MD1.4 !
3 |pidSetpoint REAL %MB1.3 !

2) Change the variable type, either by editing the type name in the corresponding cell or by clicking on the
button in that cell and select the desired type from the list that pops up.

Mame Type Address
1 |pidkP .| %MD1.0
2 | pidKl REAL %GMD1.4
3 |pidSetpoint REAL %MB1.8
Object browser @
Objects fiter
Name Type
Prograrns Operators BOOL Basic lypes
[Function Blocks [b]evTE Basic lypes
Functions Standard functions DINT Basic types
Variables Local variables % DWORD Basic types
INT Biasic types
[] User ypes Basic types i
[r]REAL Basic lypes
[Checkal | [Checknons | SINT Basic lypes
[st]$TRING Basic lypes
@UD\NT Basic types
Other filters [ui LINT Basic lypes
Mems - jus|usiNT B asic types
[w]'woRD Basic tynes
Library Al A
] . r
ux
L — '

3) Edit the address of the variable by clicking on the button in the corresponding cell and entering the re-
quired information in the window that shows up. Note that, in the case of global variables, this operation
may change the position of the variable in the project tree.

Mame Type Address
1 | pidkpP REAL %MD1.0 N
2 |pidKl REAL %MD1.4
3 |pidSetpoint REAL %5MB1.3

[]
D1WWTEO6E o walvoil

FLUID POWER E[MOTION

PHC STUDIO

-

Variable address ﬁ

[T] Automatic address
Size Loeation
) Bit) Input
() Byte (8 bit) () Output
1 whard (16 bit) @ Memary

@ Double ward (32 bit)

Data block Index

L

4) In the case of global variables, you can assign the variable to a group, by selecting it from the list which

opens when you click on the corresponding cell. This operation will change the position of the variable in
the project tree.

Mame Type Address Group
2 |pidKl REAL %MD1.4
3 |pidSetpoint REAL %MB1.8
) Elevator
4 |pidOutput REAL %MD1.12 Counters and imers
5 |pidFeedback REAL %MD1.16 Mappings

5) Choose whether a variable is an array or not; if it is, edit the size of the variable.

—— e e e -

BOOL Auta Ma TRUE

DWORD %MAIZT Cycle [0.4] _R!sm)
REAL %MDED. 20 Mo 1.0
[Size of Variable ﬂ‘
(") Scalar
@ Array / Matris

Dimensions 2.2

%

6) Edit the initial values of the variable: click on the button in the corresponding cell and enter the values in
the window that pops up.

-

Init values for: () @1

[0.1.2.1]

[af J [Cancel]

\

7) Assign an attribute to the variable (for example, CONSTANT or RETAIN), by selecting it from the list which
opens when you click on the corresponding cell.

54 |PIDModeAnaloginput INT Auto PID Mo 2 [consTANT 7]
55 |PIDModeAutomatic INT Auto PID No 3 -

56 |PIDModeManual INT Auto PID No 1
R7 |PINMadandf IBIT Lt PIMn kln h] v :

8) Type a description for the variable in the corresponding cell. Note that, in the case of global variables, this
operation may change the position of the variable in the project tree.

72 e>walvoil

FLuio PoweR ElMaTiaN D1WWTEO6E

PHC STUDIO

Mo 2 COMSTANT Indicates PID analog input reference mode
Ma 3 COMNSTANT Indicates PID automatic reference mode
Mo 1 COMSTANT Indicates PID manual reference mode

0

Mo COMNSTANT Indicates PID reference mode disabled

9) Save the project to persist the changes you made to the declaratn of the variable.
6.6.4 DELETING VARIABLES

In order to delete one or more variables, select them in the editor: you may use the CTRL or the SHIFT keys
to select multiple elements.

Mame Type Address
1 |pidkP REAL %%MD1.0
2 pidkl REAL SaMD1.4
3 pid3etpoint REAL %MB1.3
4 | pidOutput REAL %MD1.12
5 |pidFeedback REAL %MD1.16
& pidkD REAL %eMD1.20
7 |hmiPIDSetpoint REAL “aMB1.24
L O ¥ s ROBIRA AR

Then, click [Variables>Delete .
Notice that you cannot delete the RESULT of an IEC61131-3 FUNCTION.

6.6.5 SORTING VARIABLES

You can sort the variables in the editor by clicking on the column header of the field you want to use as the
sorting criterion.

Mame E Type Ac

Mame % - Type AL 1 |freeRunCounter DINT Auto

1 |valueFilt REAL A0 2 lincr INT Auto

2 |tau REAL Sl 3 ki UINT Auto

3 |walueRef REAL Sl 4 | kInilner INT Auta

4 |period REAL Sl 5 |period REAL Sl

5 |kInilncr INT Auto E fau REAL %o hf[

£ ki LT Auta 7 |walueFilt REAL bt

7 lincr INT Auto 8 wvalueRef REAL o[
8 |freeRunCounter DINT Auto

6.6.6 COPYING VARIABLES

The variables editor allows you to quickly copy and paste elements. You can either use keyboard shortcuts or
the B2 Edit>Copy , @ Edit>Paste menu.

Note: overlapping addresses problems may occur by copying mapped variables. PHC Studio can
automatically assign new free address to the new pasted variable and fix the overlap. In
order to enable this functionality please refer to paragraph 3.6 and 4.8.3.2 for further
details.

[]
D1WWTEO6E o walvoil

FLUID POWER E[MOTION

PHC STUDIO

(]
72 e>uWwalvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

7. COMPILING

Compilation consists of taking the PLC source code and automatically translating it into binary code, which can
be executed by the processor on the target device.

7.1 COMPILING THE PROJECT

Before starting actual compilation, make sure that at least one program has been assigned to a task.

When this pre-condition does not hold, compilation aborts with a meaningful error message.

Output @

|
error P2068: HNo task defined for the application

»

0 warnings. 1 errors.

4| o[l Buid { Find in project)\ Debug)\ Resources /

|.m

In order to start compilation, click & Project>Compile .
Note that PHC Studio automatically saves all changes to the project before starting the compilation.

7.1.1 IMAGE FILE LOADING

Before performing the actual compilation, the compiler needs to load the image file (img f7ile), which
contains the map of memory of the target device. If the target is connected when compilation is started, the
compiler seeks the image file directly on the target. Otherwise, it loads the local copy of the image file from the
working folder. If the target device is disconnected and there is no local copy of the image file, compilation can-
not be carried out: you are then required to connect to a working target device.

Qutput @

FlcEzample.img - error I0001: i
Inwalid memory image file.
Flea=e upload memory image from the target

m 3

< |
4| s Build { Find in project }\ Debug)\ Resources ‘.(

7.2 COMPILER OUTPUT

If the previous step was accomplished, the compiler performs the actual compilation, then prints a report in the
Output window. The last string of the report has the following format:

m warnings, n errors
It tells the user the outcome of compilation.

Condition Description

Compiler error(s). The PLC code contains one or more serious errors, which cannot be

n>0 worked around by the compiler.

Emission of warning(s). The PLC code contains one or more minor errors, which
the compiler automatically spotted and worked around. However, you are informed
n=0, m>0 that the PLC program may act in a different way from what you expected: you are
encouraged to get rid of these warnings by editing and re-compiling the application
until no warning messages are emitted.

PLC code entirely correct, compilation accomplished. You should always work with 0

n=m=0
warnings, 0 errors.

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

7.2.1 COMPILER ERRORS

When your application contains one or more errors, some useful information is printed in the Output window
for each of those errors.

Output @

Preproces=ing Global shared completed

>

0 warnings, 0 errors

Preprocessing user defined data conpleted

Compiling programns conpleted

Conpiling function blocks conpleted

Compiling functions conpleted

FPreprocesszing user defined data conpleted =

Code generation ..

Freprocessing EnbeddedElenents conpleted
aborted.

FAIN(I) — error A4097 N1 =3: Object not found

0 warnings. 1 errors i

4| »[, Buid { Find in project)\ Debug)\ Resources J."

As you can seeg, the information includes:

- the name of the Program Organization Unit affected by the error;

- the number of the source code line which procured the error;

- whether it is a fatal error (error) or one that the compiler could work around (warning);
- the error code;

- the error description.

Refer to the appropriate section for the compiler error reference.

If you double-click the error message in the Output bar, PHC Studio opens the source code and highlights the
line containing the error.

(]
76 <> uWalvoil D1WWTEO6E

FLUID POWER E[MOTION

PHC STUDIO

| Project
=8

Even
0001 n o= nl + 1;

VP100PIcSample Project
-[C1 Counters and timers
£ HMI samples

@) Elevator vars
& Loopsvars

-3 Pi0 1
() Aux Variables I
B Tasks 1
£ Timed T
#--+_+ Background E—
i3 Init 1
LR Main L

ijact o-ODeﬁmtl.H@ Resour...

Output
Preprocessing Global shared completed.

0 warnings, 0 errors

Preprocessing user defined data completed
Compiling programs .. completed.

Compiling function blocks .. complested.
Compiling functions .. completed.
Preprocessing user defined data .. completed.

Code generation
Preprocessing EmbeddedElements completed

0 warnings. 1 errors.

4| v\ Buld { Findin project), Debug) Resouwces [

You can then fix the problem and re-compile.

|Project " Xl I Resources “ Main

B VP100PlcSample Project T001 T
[Counters and timers |
- 23 HMIsamples |
231 Function blocks =
%3P Elevator
@) Elevator vars
: @ Loopsvars —
3 Fip |
v (F Aux Variables —
Tasks T
£ Timed
74} Background —
B4+ ¥ Init
LR Main L
[Project /o Definiti.. Resour... <
Qutput
Code size: 480h ({ 1 EByte)
Free code space: FFES0h { 1022 EByte)
Data space: 80000k { E12 KBwte)
Free data space: 7FFCZh (511 EBwte)

0 warnings. 0 esrrors.

4 [
4 bl\ Build { Findin project), Debug) Resowces [

[]
D1WWTEO6E o walvoil

FLuIiD POwWER E[MOTION

PHC STUDIO

7.3 COMMAND-LINE COMPILER

PHC Studio’s compiler can be used independently from the IDE:

in PHC Studio’s directory, you can find an ex-

ecutable file, Command-1ine compiler, which can be invoked (for example, in a batch file) with a number

of options.

In order to get information about the syntax and the options of this command-line tool, just launch the execut-

able without parameters.

@ C\Windows\system3Z\cmd.exe =R

C:\Program Files (x86>“\Axel PC Tools\LogicLab4>1llc
1lc.exe — PLC GCompiler v4.8.08.%9 — Copyright 20AB-2013 Axel

Command line:
11c

Usage : llc <prj> <flag> [{<{flag>>1 [-Q]

Project file {=.pleprj.*.ppjs.*.ppjx,*.rsmd>
flags: conpiler options

[Compiler options:

2 Download compiled project

{if not already compiled will compile it>
|G Compile the pri Ject {trying to connect)>
L c Compile the project without nnnnectlng
A Rebuild and dmmluad the project
/GCL:<file>] Generate C headers in the destination file.

{default efault_h’>
l/GTL:<file>] Generate e target ua»lahle track file.

{default ’Default.osc’>
/GGl :<file>] Generate e global variable track file.

C{default ’'Default.osc’>
LF: ¢comm> — Force the communication properties
/T :{target> Force the target hoard type
{used to dounload code without opening the project>
Perform download acknowledge reguest
Rebuild the project (trying to connect?
Rebuild the project thout connectin
Perform download without checking for updated source status
fAppend the output to the destination file.
{valid only with ~GT e ~GG flags>
Generate red ributable source file.
Use additional configurat
Generate TGSX target definition file for simulator
Do not reload PLC after download
Decode REM file and save as indicated in file parameter
If specified llc does not uplead image file for target or get
duunlaad address h-u target
L WRU Verify target identity
l/'uP:{procname> - Force target processor

{used in combination with AURU and /T to verify target identit
ly without opening the project)>
’hl:zpathl.name]1] — Generate target hinaries ¢(bin. tsc, tds> files.

ption absolute or relative path and name can be specified ¢

relative folder nload"”, name: project name}
i — Save project with different folder and name, changing project
necessary
— Print progme percentage while downloading.

Hote: the flags are case-sensitive

[.flle[.pud]]

7z e Wwalvoil

D1WWTEOG6E

PHC STUDIO

8. LAUNCHING THE APPLICATION

In order to download and debug the application, you have to establish a connection with the target device. This
chapter focuses on the operations required to connect to the target and to download the application, while the
wide range of PHC Studio’s debugging tools deserves a separate chapter (see Chapter 9).

8.1 SETTING UP THE COMMUNICATION

In order to establish the connection with the target device, make sure the physical link is up (all the cables are
plugged in, the network is properly configured, and so on).

Follow this procedure to set up and establish the connection to the target device:

1) Click On-line>Set up communication... menu of the PHC Studio main window. This causes the fol-
lowing dialog box to appear.

r ™
Device Link Manager Config v10.1.1.0 lﬂ

Current selected pratocal : GDB
Priotocal: Achive o
¥ GDE Active |_|
¥ ModbusTCP M
Y PCDev
bl < = P i
4 i | »
Fropertizs
D escription
Modbus Protocol
[0K] [Cancel]

e

The elements in the list of communication protocols you can select from depend on the setup executable(s)
you have run on your PC (refer to your hardware provider if a protocol you expect to appear in the list is

missing).
2) Choose the appropriate protocol and make it the active protocol.

'8 al
Device Link Manager Config v10.1.1.0 &J

Current selected protocal : GDE

Protocols Active i

W GDE Active

¥ ModbusTCP E
U PCDev

"l Y = PO &
4| n | *

Froperties

Description
Modbus Protocal

[Ok J [Cancel

o walvoil »

DIWWTEOGE e e, maTion

PHC STUDIO

protocol-specific
timeout - that is how long PHC Studio must wait for an answer from the target before displaying a com-

settings (e.g.,

the address or the

—1

communication

Madbus Config v10.1.1.0 =]

Communication

Part COM4 =
Baudrate 29400 -

Frame settings N2 -
RS-422 mode
Frotocol
@ Modbus Address 4

() Modbus ASCI - Timeout 1000

) Jbus

[Enahle remote communication

Server name

[~] Enable madem communication

Dial number

3) Fill in all the
munication error message).
Device Link Manager Config v10.1.1.0
r bl
Device Link Manager Config v10.1.1.0 ﬁ Current selected protocol : Modbus
Curent selected protocal : Modbus Protocals Active
. i W Modhus Active
Frotocals: Active W ModbusTCP
Active | ¥ PCDev
U ModbusTCR E | U SiawProComnm
W PCDev = S .
U SiawProCornm | L
T Tl il
< U Activa
- k Madbus Pratocal
Desciiption
Maodbus Protocol
[
_
\
4) Apply the changes you made to the communication settings.

Device Link Manager Config v10.1.1.0

[SSc)

Current zelected protocol : Modbus

Protocols Active
W Modbus Active
T ModbusTCP

¥ PCDev

H SiawPraComm

S il
4 n]

[m]

Description

Modbus Pratocol

Now you can establish communication by clicking 21 On-line>Connect menu.

s0 e uwalvoil

FLuIiD PowER E[MOTION

D1WWTEOG6E

PHC STUDIO

8.1.1 SAVING THE LAST USED COMMUNICATION PORT

When you connect to target devices using a serial port (COM port), you usually use the same port for all devices
(many modern PCs have only one COM port). You may save the last used COM port and let PHC Studio use that
port to override the project settings: this feature proves especially useful when you share projects with other
developers, which may use a different COM port to connect to the target device.

In order to save your COM port settings, enable the Use Tast port option in File>Options... menu.

General | Graphic Editor | Text Editors | Language | Tools | Merge

Save options Communication
Autosave |1 Interval {min) Use last port
10 Tooltip
Max previous versions to keep: Exsablihoolip on-ediiors

8.2 ON-LINE STATUS
8.2.1 CONNECTION STATUS

The state of communication is shown in a small box next to the right border of the Status bar.

If you have not yet attempted to connect to the target, the state of communication is set to Not connected.

NOT CONMNECTED

When you try to connect to the target device, the state of communication becomes one of the following:

- Error: the communication cannot be established. You should check both the physical link and the communi-
cation settings.

ERROR

- Connected: the communication has been established.

COMNECTED

8.2.2 APPLICATION STATUS

Next to the communication status there is another small box which gives information about the status of the
application currently executing on the target device.

When the connection status is Connected, the application status takes on one of the following values.
- No code: no application is executing on the target device.

- Diff. code: the application currently executing on the target device is not the same as the one currently
open in the IDE; moreover, no debug information consistent with the running application is available: thus,
the values shown in the watch window or in the oscilloscope are not reliable and the debug mode cannot be
activated.

DIFF. CODE

- Diff. code, Symbols OK: the application currently executing on the target device is not the same as the
one currently open in the IDE; however, some debug information consistent with the running application is
available (for example, because that application has been previously downloaded to the target device from
the same PC): the values shown in the watch window or in the oscilloscope are reliable, but the debug mode
still cannot be activated.

DIFF. CODE (S5YM)

- Source OK: the application currently executing on the target device is the same as the one currently open in
the IDE: the debug mode can be activated.

[]
D1WWTEO6E o walvoil s:

nnnnnnnnnnn |IMoTion

PHC STUDIO

SOURCE DK

8.3 DOWNLOADING THE APPLICATION

A compiled PLC application must be downloaded to the target device in order to have the processor execute it.
This paragraph shows you how to send a PLC code to a target device. Note that PHC Studio can download the
code to the target device only if the latter is connected to the PC where PHC Studio is running. See the related
section for details.

To download the application, click 41 On-line>Download code .

PHC Studio checks whether the project has unsaved changes. If this is the case, it automatically starts the
compilation of the application. The binary code is eventually sent to the target device, which then undergoes
automatic reset at the end of transmission. Now the code you sent is actually executed by the processor on the
target device.

8.3.1 CONTROLLING SOURCE CODE DOWNLOAD

Whether the source code of the application is downloaded along with the binary code or not, depends on the
target device you are interfacing with: some devices host the application source code in their storage, in order
to allow the developer to upload the project in a later moment.

If this is the case, you can control some aspects of the source code download process, as explained in the fol-
lowing paragraphs.

(]
2 e>walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

8.3.1.1 PROTECTING THE SOURCE CODE WITH A PASSWORD

You may want to protect the source code downloaded to the target device with a password, so that PHC Studio
will not open the uploaded project unless the correct password is entered.

Click the Project>Options... menu and set the password.

General | Codegenerton | Buldouput |
T owrioad | Debug | Buld everts |
Source code
Download time |Eln PLLC application download v|
Protect with password
Password [ewsnned] |
Debug symbols
Download time 0On PLC application download hd
|

You may opt to disable the password, instead.

General | Code generation | Build output |
Download i Debug | Build events

Source code

Download time |Eln PLC application download v|

Protect with password

Password |
Debug symbals
Download time 0On PLC application download hd

[]

D1WWTEOG6E

o walvoil s:

FLuIiD POwWER E[MOTION

PHC STUDIO

8.3.1.2 SOURCE CODE AND DEBUG SYMBOLS DOWNLOAD TIME

From the following select menu you can set the Source code download time.

General | Code generation | Build output ‘

fownioad | Debug | Build events |

Source code

Download time On PLC application download v

wi S On PLC application download

Protect with password 5 ciore disconnection [

Password Newver

Debug symbols

Download time On FLC application download e

Choosing:

- 0On PLC application download: the Source code will be downloaded to the target together with PLC

application.

- Before disconnection: the Source code will be downloaded before target disconnection.

- Never: the Source code will be never downloaded to the target.

As well as Source code the Debug symbols download time can be set using the following select menu with the

same options.

Fassword

Debug symbols

Download time

Protect with password

Generdl | Codegeneraion | Buldouput |
Bownload | Debug | Build everts |
Source cods
Dowrload time [On PLE application download |

On PL application download ~|

On PLC application download
B efor clion

s e uwalvoil

FLuIiD PowER E[MOTION

D1WWTEOG6E

PHC STUDIO

8.4

8.5

8.5.1

8.5.2

8.5.3

8.5.4

8.5.5

SIMULATION

Depending on the target device you are interfacing with, you may be able to simulate the execution of the PLC
application with PHC Studio’s integrated simulation environment: SimulLab.

In order to start the simulation, just click 1 Debug>Simulation mode .

Refer to SimuLab’s manual to gain information on how to control the simulation.

CONTROL THE PLC EXECUTION

The PLC application execution can be controlled using the related functions in the project bar or by the command
presents in the On-line menu.

HALT

You can stop the PLC execution by clicking m On-line>Halt

COLD RESTART

The PLC application execution will be restarted and both retain and non-retain variables will be resetted.
You can cold restart the PLC execution by clicking & On-line>Cold restart .

WARM RESTART

The PLC application execution will be restarted and only non-retain variables will be resetted.
You can warm restart the PLC execution by clicking & On-line>Warm restart .

HOT RESTART

The PLC application execution will be restarted and no variables will be resetted.
You can hot restart the PLC execution by clicking & On-line>Hot restart .

REBOOT TARGET

You can reboot the target by clicking # On-line>Reboot target .

D1WWTEOG6E

o walvoil ss

nnnnnnnnnnn |IMoTion

PHC STUDIO

(]
ss e wWwalvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

9. DEBUGGING

PHC Studio provides several debugging tools, which help the developer to check whether the application be-
haves as expected or not.

All these debugging tools basically allow the developer to watch the value of selected variables while the PLC

application is running.

PHC Studio debugging tools can be gathered in two classes:

- Asynchronous debuggers. They read the values of the variables selected by the developer with successive
queries issued to the target device. Both the manager of the debugging tool (that runs on the PC) and, po-
tentially, the task which is responsible to answer those queries (on the target device) run independently from
the PLC application. Thus, there is no guarantee about the values of two distinct variables being sampled in

the same moment, with respect to the PLC application execution (one or more cycles may have occurred); for
the same reason, the evolution of the value of a single variable is not reliable, especially when it changes fast.

- Synchronous debuggers. They require the definition of a trigger in the PLC code. They refresh simultaneously
all the variables they have been assigned every time the processor reaches the trigger, as no further instruc-
tion can be executed until the value of all the variables is refreshed. As a result, synchronous debuggers obvi-
ate the limitations affecting asynchronous ones.

This chapter shows you how to debug your application using both asynchronous and synchronous tools.

9.1 WATCH WINDOW

The Watch window allows you to monitor the current values of a set of variables. Being an asynchronous tool,
the Watch window does not guarantee synchronization of values. Therefore, when reading the values of the
variables in the Watch window, be aware of the possibility that they may refer to different execution cycles of
the corresponding task.

The Watch window contains an item for each variable that you added to it. The information shown in the
Watch window includes the name of the variable, its value, its type, and its location in the PLC application.

Symbaol Value Type Location
mm HMIPIDTEST FALSE BOOL global
— HMIPIDTHRESHOLD 0z REAL global
— PARCTDOWMPRESET 100 INT global
— BASETIME 0 UDINT @FAST:PIDMODESELECTOR

9.1.1 OPENING AND CLOSING THE WATCH WINDOW

To open, close the Watch window, click & View>Tool windows>Watch .
Closing the Watch window means simply hiding it, not resetting it. As a matter of fact, if you close the Watch
window and then open it again, you will see that it still contains all the variables you added to it.

9.1.2 ADDING ITEMS TO THE WATCH WINDOW

To watch a variable, you need to add it to the watch list.

Note that, unlike trigger windows and the Graphic trigger window, you can add to the Watch window
all the variables of the project, regardless of where they were declared.

[]
D1WWTEO6E o walvoil «;

nnnnnnnnnnn |IMoTion

PHC STUDIO

9.1.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a textual (that is, IL or ST) source code
editor: select a variable, by double-clicking on it, and then drag it into the watch window.

Loops Watch

001 i s B EmEY

nooe

0003 E = ®E + hmiFrequency: Symbel Value Type Location
0004 . . . A HWMISINVAL 0982414 REAL @FAST:LOOPS
aoos hmiSinWVal := SIN{ =)} * hmniiwmplitude;

aones hmiCosVal = COS{ =) * hmiimplitude;

0007

ooos hmiStep = hmiStep + 1:

0oos9

The same procedure applies to all the variables you wish to inspect.

9.1.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a graphical (that is, LD, FBD, or SFC) source
code editor:

1) Click ‘@ Edit>Watch mode .
2) Click on the block representing the variable you wish to be shown in the Watch window.

f= Resources B2 Elevator E fbd1 *

Local variables

Name Type Address Array Init value Attribute
1 |startt BOOL Auto Mo
2 |start2 BOOL Auto Mo
3 |ready BOOL Auto No
4 |run BOOL Auto MNo
5 X BOOL Auto No

o001

run)

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked on.

F ki
Debug windows list M

Symbol to add:
autl

Debug windows
Swfatch
Dzcillozcope

[Lancel] [_ 1]]

In order to display the variable in the Watch window, select Watch, then press OK.

88

o walvoil

uuuuuuuuuuu marian D1WWTEO6E

PHC STUDIO

F |
Debug windows list u

Syrbol to add:
| outl

Debug windows

Ozcillogcope

LCancel] I— 0k]

The variable name, value, and location are now displayed in a new row of the Watch window.

‘Watch S
|68 | v+ | v
Symbol Value Type Location
mm OUT1 FALSE BOOL @FAST:TEST
mm [MP2 FALSE BOOL @FAST:TEST
mm [NP1 FALSE BOOL @FAST:TEST

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Watch window all the variables you want to observe, you should click
: Edit>Insert/Move mode : the mouse cursor turns to its original shape.

9.1.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Watch window, you can select the corresponding record in the variables editor
and then either drag-and-drop it in the Watch window

Local variables Watch a1 x
Name Type Address Array Init value Attribute |) | 123 | | ¥
1 REAL Auto Mo Symbol Value Type Location
A HMISINVAL -0.0381798 REAL @FAST:LOOPRS

+

or press the F8 key.

Local variables Watch T x
Name Type Address Array Init value Aftribute ‘ 6 | F# | | v
1o0x REAL Auto Mo Symbol Value Type Lecation
A HMISINVAL -0.895553 REAL @FAST:LOOPS
-~ 488612 REAL @FAST:LOOPS

9.1.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Watch window, you can select it in the project tree and then either drag-and-
drop it in the Watch window

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn [MoTian

PHC STUDIO

i - [Counters and timers |atcn =
é--aHMIsamples |§é|’*| »
L e [C1 Function blocks Symbol Value Type Location
BrEP Elevator
P Loops k
(= @ Local vanables
or press the F8 key.
: B watch o
-[C Counters and timers [
25 HMI samples |S£|'*| v
i1 1 Function blocks Symbel Value Type Location
MgF Elevator A) 2356.59 REAL @FAST:LOOPS
=3 F' Loops
HE = . @ Local variables

9.1.2.5 ADDING A VARIABLE FROM THE WATCH WINDOW TOOLBAR

You can also click on the appropriate item of the Watch window inner toolbar, in order to add a variable to it.

Watch B x
I v
Symbaol Value Type Location

You shall type (or select by browsing the project symbols) the name of the variable and its location (where it
has been declared).

Irﬁ\dd item to watch window u1
Symbol name hritwcceleration [Brawse] [Address]
Location Elevator

[Cancel] [Ok]
o 4

9.1.3 REMOVING A VARIABLE

If you want a variable not to be displayed any more in the Watch window, select it by clicking on its name
once, then press the DeT key.

Watch B x
6 ve | v
Symbol Value Type Location
— HMIACCELERATION 0.025 REAL global
— HMIACTUALPOSITION 306 DINT global

e HMIACTUALSPEED 1] REAL global

| Watch 2 x|
6]re | v
Symbol Value Type Location
— HMIACCELERATION 0.025 REAL global
— HMIACTUALPOSITION 306 DINT global

(]
o e>walvoil D1WWTEO6E

FLuIiD PowER E[MOTION

PHC STUDIO

9.1.4 REFRESHMENT OF VALUES
9.1.4.1 NORMAL OPERATION

Let us consider the following example.

Loops Watch

nooL 3 [v+ | ER B

0002 -

0003 % = x + hmiFrequency: Symbol Value Type Location

gggé i SinTal SINC ®) * hniAnplitad A HMISINVAL 0322231 REAL @FAST:LOOPS
mliolnva = X * miAmplitude; .

0006 hmiCosVal ‘= COS({ =) * hmikmplitude 4 HMICOSVAL 094632 REAL @FAST:LOOPS

il Ay 31,0868 REAL @FAST:LOOPS

0o00g hmiStep .= hmiStep + 1:

The watch window manager reads periodically from memory the value of the variables.

However, this action is carried out asynchronously , that is it may happen that a higher-priority task modifies the
value of some of the variables while they are being read. Thus, at the end of a refreshment process, the values
displayed in the window may refer to different execution states of the PLC code.

9.1.4.2 TARGET DISCONNECTED

If the target device is disconnected, the /@] ue column contains three dots.

Loops ‘Watch

G001 = & 6| v | e

oooe a

1003 % = = + hniFrequency: Symbaol Value Type Location

gggé niSiaTal s) hd Annli tud HMISINVAL REAL @FAST:LOOPS
miSinVal := ®) * hmikmplitude; .

0005 hniCosVal ‘= COS{ ®) * huiwplituds. HMICOSVAL REAL @FAST:LOOPS

ooz X REAL @FAST:LOOPS

ooog hmiStep := hmiStep + 1:

ooos

9.1.4.3 OBJECT NOT FOUND

If the PLC code changes and PHC Studio cannot retrieve the memory location of an object in the Watch win-
dow, then the Value column contains three dots.

Loops % InputVars % Elevator vars * | Watch

0001 B [+ EEmE Y

000z -

0003 (* = := = + hniFrequency: Syl ol Type focztion

gggé BiGintel 1= SINC %) % hmdAnplitud — HMISINVAL 0 REAL @FAST:LOOPS
mliolnva o= = * mlamnp 1t = 3

0006 (*hmiCosVal = COS{ =) * hmikmplitude;) — HMICOSVAL 0 REAL @FAST:.LOOPS

0007 X INT @FAST:LOOPS

ooog hmiStep := hmiStep + 1:

TiE]

If you try to add to the Watch window a symbol which has not been allocated, PHC Studio gives the following
error message.

Loaps Bp Inputvars Bp Elevator vars » | Watch
0001 n |6 | v+ | R R

Symbol Value Type Location

v

0003 (* = := ® + hniFreguency:
I P iBinTal - BIN(=) * hmidnplitud — HMISINVAL 0 REAL @BFAST:LOOPS

Mlolnva L= = * mlamp 1tu =
0006 (*hmiCo=¥al = COS{ =) * hmidmplitude:*) — HMICOSVAL 0 REAL @FAST:LOOPS

0oog hniStep := hmiStep + 1:

, |
0010 LogicLab [

! k X symbol not found. Can't add to watch

[]
D1WWTEO6E o walvoil

FLUID POWER E[MOTION

PHC STUDIO

9.1.5 CHANGING THE FORMAT OF DATA

When you add a variable to the Watch window, PHC Studio automatically recognizes its type (unsigned integer,
signed integer, floating point, hexadecimal), and displays its value consistently. Also, if the variable is floating
point, PHC Studio assigns it a default number of decimal figures.

However, you may need the variable to be printed in a different format.

To impose another format than the one assigned by PHC Studio, press the Format value button in the

toolbar.
Watch
B 6+ | Y
Symboel Value Type Location
B isiwiaL 03— ReaL—arastioops
w HMICOSVAL -0.690124 REAL @FAST:LOOPS
- ¥ 146,846 REAL @FAST:LOOPS

Choose the format and confirm your choice.

r\l’alue format ﬁ‘
Farmat
Signed
Unszigned
@ Float
Binary
Octal
() Hexadecimal
Float format
Mumber of decimal 3
L

9.1.6 WORKING WITH WATCH LISTS

You can store to file the set of all the items in the Watch window, in order to easily restore the status of this
debugging tools in a successive working session.

Follow this procedure to save a watch list:

1) Click on the corresponding item in the Watch window toolbar.

Watch
0 B EE Y

Symbaol L} Value Type Location
& HMISINVAL 0891167 REAL @FAST:LOOPS
w HMICOSVAL 0.453676 REAL @FAST:LOOPS
B 516321 REAL @FAST:LOOPS

(]
2 e>walvoil D1WWTEO6E

uuuuuuuuuuu [MoTionN

PHC STUDIO

2) Enter the file name and choose its destination in the file system.

g B
Select watch list file u

—
. /= . » SoftPanelPLC ~ [#¢ || Cerca SoftPanelPLC yel
o |

Organizza Nuova cartella = - @

't Preferiti Neme Ultima modifica Tipo

Bl Deskiop
& Download
) Test

) PriTest

. Win.net ~ 4] 10 3

Nessun elemento corrisponde ai criteri di ricerca.

Mome file: watch| .

Salva come: [Watch list extended file(*.wlsx) -

= MNascondi cartelle [Salva] [Annulla

L

You can load a watch list from file, removing the opened one, following this procedure:

1) Click on the corresponding icon in the Watch window toolbar.

|Watch
|6 | v | B v
Symbol L} Value Type Lecation
A HMISINVAL 0.956504 REAL @FAST:LOOPS
w HMICOSVAL 0.291719 REAL @FAST:LOOPS
e 103172 REAL @FAST:LOOPS

2) Browse the file system and select the watch list file.

r B
Select watch list file u

—
{ J=| . » SoftPanelPLC « | #4 || Cerca SoftPanelPLC yel
) |

Organizza ~ MNuova cartella == - m @

= Risorse recenti o Nome Ultima modifica Tipo

|| watch.wlsx 22/12/2014 12:18 File WLSX

71l Raccolte
@ Documenti
[&] Immagini
J’ Musica
[57 Subversion

B video

m

i@ Gruppo home

% Computer | T] v

Nome file: watch.wlsc | Watch list etended file(wisg |

[i v [Annuie |

The set of symbols in the watch list is added to the Watch window.

|Watch
6 ve |
Symbol Type Location
— HMIACCELERATION 0.025 REAL global
— HMIACTUALPOSITION 306 DINT global
— HMIACTUALSPEED 0 REAL global

You can load a watch list from file, appending to the opened one, following this procedure:

1) Click on the corresponding icon in the Watch window toolbar.

[]
D1WWTEO6E o walvoil

FLuIiD POwWER E[MOTION

PHC STUDIO

Watch
|5 | ox v

Symbol Value Type Location
— HMIACCELERATION 0.025 REAL global
— HMIACTUALPOSITION 306 DINT global
— HMIACTUALSPEED 0 REAL global

2) Browse the file system and select the watch list file.

r bl
Select watch list file @

& =[] » softpanelriC « [%2][Cerca oftPaneipLC)

Organizza v Muova cartella B=~ O '@'

2 Risorse recenti g Nome Ultima medifica Tipo

| watch.wilsx 22/12/2014 12:18 File WLSX.

A Raccolte
3 Documenti
= Immagini
J‘- Musica
[Subversion

B video

m

Qla Gruppeo home

1% Computer - T] }

Norme file: watchwlsx ~ [Watch list etended file(* wisg ~|

[api v [Annui |

A

The set of symbols in the watch list is added to the Watch window.

Watch
| 6 [v+ | v

Symbaol Value Type Location
& HMISINVAL 0.251586 REAL @FASTLOOPS
w HMICOSVAL 0967835 REAL @FAST:LOOPS
B 135114 REAL @FAST:LOOPS
— HMIACCELERATION 0.025 REAL global
— HMIACTUALPOSITION 306 DINT global
— HMIACTUALSPEED 0 REAL global

You can clear the current opened watch list by clicking on the following icon:

Watch R ox
G | b L2
Sumbaol Val = [£
e — e Remove all items from the watch Iisti—
mm hmiPidTest FALSE (sAw v qTooET
— pidKD 0 REAL global

9.1.7 AUTOSAVE WATCH LIST

By selecting the associated option in the project options dialog (see Paragraph 4.6.5 for more info) the watch
list will be automatically saved on the project closing.

The saved watch list will be automatically loaded (with no append option) on the first connection to target when
the project will be re-opened.

9.2 OSCILLOSCOPE

The Oscilloscope allows you to plot the evolution of the values of a set of variables. Being an asynchronous tool,
the Oscilloscope cannot guarantee synchronization of samples.

Opening the Oscilloscope causes a new window to appear next to the right-hand border of the PHC Studio frame.
This is the interface for accessing the debugging functions that the Oscilloscope makes available. The Oscillo-

(]
» e>walvoil D1WWTEO6E

FLUID POWER E[MOTION

PHC STUDIO

scope consists of three elements, as shown in the following picture.

Oscilloscope 1 x

HEHE B IR (nn » |F|SH

Min value Max value Curvalue v/div Red curs

The toolbar allows you to better control the Oscilloscope. A detailed description of the function of each control
is given later in this chapter.

The Chart area includes several items:
- Plot: area containing the curve of the variables.

- Vertical cursors: cursors identifying two distinct vertical lines. The values of each variable at the intersection
with these lines are reported in the corresponding columns.

- Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot area, the scroll bar allows
you to slide back and forth along the horizontal axis.

The lower section of the Oscilloscope is a table consisting of a row for each variable.

9.2.1 OPENING AND CLOSING THE OSCILLOSCOPE

To open, close the Oscilloscope, click & View>Tool windows>Oscilloscope .

Closing the Oscilloscope means simply hiding it, not resetting it. As a matter of fact, if you open again the Oscil-
loscope after closing it, you will see that plotting of the curve of all the variables you added to it starts again.

9.2.2 ADDING ITEMS TO THE OSCILLOSCOPE

In order to plot the evolution of the value of a variable, you need to add it to the Oscilloscope.

Note that unlike trigger windows and the Graphic trigger window, you can add to the Oscilloscope all the
variables of the project, regardless of where they were declared.

(]
D1WWTEOQGE o walvoil -

PHC STUDIO

9.2.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a textual (that is, IL or ST) source code editor:
select a variable by double-clicking on it, and then drag it into the 0Sc7170scope window.

03 ¥ = ®E + hmniFrequency:

04

05 hmiSinVal := SIN{ =) * hmidmplituds:
06 hniCosVal := COS{ x)} * hmiAmplitude:
a7

a8 hniStep := hmiStep + 1:

The same procedure applies to all the variables you wish to inspect.

9.2.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a graphical (that is, LD, FBD, or SFC) source
code editor:

1) Click ‘& Edit>Watch mode .
2) Click on the block representing the variable you wish to be shown in the Oscilloscope.

1023
J q
A

IDCONTROL.PL...

3) A dialog box appears listing all the currently existing instances of debug windows, and asking you which
one is to receive the object you have just clicked on.

Debug windows list @

Symbol to add:
andchuator

Debug windows
Watch

M

Select 0scilloscope, the press OK. The name of the variable is now displayed in the Track column.
The same procedure applies to all the variables you wish to inspect.

Once you have added to the Oscilloscope all the variables you want to observe, you should click
s Edit>Insert/Move mode : the mouse cursor turns to its original shape.

(]
% e>walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

9.2.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Oscilloscope, you can select the corresponding record in the variables editor
and then either drag-and-drop it in the Oscilloscope

B Resources Loaps =18 Elevator T} LadderLogic B Blevator vars Oscilloscope
PR T HHEEEEE K& mn
Class Pin Name Type Array Initvalue Attribute Description A
1 |VAR absSpeed REAL No . Absolute value of actual speed
2 |VAR T REAL Mo : MNumber of cycles (time) of deceleraion
3 VAR remSpace DINT Ma Remaining space
4 VAR T2 REAL No Cycles (time) integral
5 |VAR sign REAL No . Direction of the movement (positive/negative
& |VAR prevSpeed REAL Mo . Previous value of the speed

or press the F10 key and choose 0sci]T1oscope from the list of debug windows which pops up.

Debug windows list [&J

Symbol to add:
end_AutoPhazel

Debug windows

9.2.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Oscilloscope, you can select it in the project tree and then either drag-and-drop
it in the Oscilloscope

hmiPidTest
[r] hmiPIDThreshold
@ PID params
parPIDAutoPeriod
~[i] parPIDMode
~[1] parPIDSetpaint
parPidTest
[] parPIDThreshold
[pidFeedback
A ool
e 0] pidKl
[0] pidKP
[1] pidOutput
lIl pidSetpoint

or press the F10 key and choose 0scilloscope from the list of debug windows which pops up.

Y
Debug windows list @

Symbol to add:
andctuatar

Debug windows
Watch

D1IWWTEOGE

o walvoil

FLUID POWER E[MOTION

PHC STUDIO

9.2.3 REMOVING A VARIABLE

If you want to remove a variable from the Oscilloscope, select it by clicking on its name once, then press the
Del key.

9.2.4 VARIABLES SAMPLING
9.2.4.1 NORMAL OPERATION

The Oscilloscope manager periodically reads from memory the value of the variables.

However, this action is carried out asynchronously, that is it may happen that a higher-priority task modifies the
value of some of the variables while they are being read. Thus, at the end of a sampling process, data associated
with the same value of the x-axis may actually refer to different execution states of the PLC code.

9.2.4.2 TARGET DISCONNECTED

If the target device is disconnected, the curves of the dragged-in variables get frozen, until communication is
restored.

9.2.5 CONTROLLING DATA ACQUISITION AND DISPLAY

The Oscilloscope includes a toolbar with several commands, which can be used to control the acquisition process
and the way data are displayed. This paragraph focuses on these commands.

Note that all the commands in the toolbar are disabled if no variable has been added to the Oscilloscope.

9.2.5.1 STARTING AND STOPPING DATA ACQUISITION

When you add a variable to the Oscilloscope, data acquisition begins immediately.

Oscilloscope [x
E]B!EE!.:E.:EB!K:{!I ADEIEY:

Min value Max value Curvalue w/div Redcurs

However, you can suspend the acquisition by clicking on Pause acquisition.

(]
s e walvoil D1WWTEO6E

PHC STUDIO

Oscilloscone T x

BHEEE &S| S| ' g EH

The curve freezes (while the process of data acquisition is still running in background), until you click on Re-
start acquisition.

Oscilloscope 2 x

=== = "éﬂ

In order to stop the acquisition you may click on Stop acquisition.

Oscilloscope 2 x

=R = =D OO EEL

In this case, when you click on Restart acquisition, the evolution of the value of the variable is plotted
from scratch.

9.2.5.2 SETTING THE SCALE OF THE AXES

When you open the Oscilloscope, PHC Studio applies a default scale to the axes. However, if you want to set a
different scale, you may follow this procedure:

1) Open the graph properties by clicking on the corresponding item in the toolbar.

uscilloscope A

HEE R XAEH s F ESH

Min value Max value Curvalue vfdiv Red curs

(]
D1WWTEOQGE o walvoil -

PHC STUDIO

2) Set the scale of the horizontal axis, which is common to all the tracks.

3) For each variable, y

Oscilloscope settings (S|
Show grid Sample polling rate 20 ms Real rate
Shove time bar Horizontal scale 1000 msAdiv 20.26
Show tracks list Buifer zize 40000 samples
Tracks list
Marne Unit Walued div Offset Hide
@FAST:PIDCONTROL.FII 100 500]
[Cancel] [Apply] [0] 4]
4) Confirm your settings. The graph adapts to reflect the new scale.
Usalloscope sethings ——)
Show grid Sample paling rate 20 s Fieal rate
Shovs time bar Horizantal scale 500 maddiv 21.63
Show tracks list Buifer size 40000 samples
Tracks list
I Mame Lnit Walue/ div Offset Hide
@FAST-PIDCONTROLFII 100 -100 [
s | R

-
Oscilloscope settings

=

Show grid Sample poling rate 20 ms Feal rate
Shaw time bar Harizontal scale 1000 mzddiv 2163
Shows tracks list Buffer size 40000 samples
Tracks list
Marne Unit Walued div Offset Hide
EFAST:PIDCOMTROLFI 1 0]
[Cancel] [Apply] i (0]:8]

ou may specify a distinct scale for the vertical axis.

100 e uwalvoil

FLuIiD PowER E[MOTION

D1WWTEOG6E

PHC STUDIO

Oscilloscope B x

BHE B TEESEE e S

Min value Max value Curvalue w/div Red curso

10,714

You can also zoom in and out with respect to both the horizontal and the vertical axes.

Oscioseope X Caillescope X

HEE B EXEBKED v r & E&EW OEB B & ey & &Q

Track Um Min value Max value Corvalue w/div Red curso Um Min value Max value Curvalue wide Red cuto

Finally, you may also quickly adapt the scale of the horizontal axis, the vertical axis, or both to include all the
samples, by clicking on the corresponding item of the toolbar.

(]
D1WWTEOQGE o walvoil o:

PHC STUDIO

Osciloscope wx Oscilloscope [
HER B IXEE /XM =0 FSE BEE

9.2.5.3 VERTICAL SPLIT

When you are watching the evolution of two or more variables, you may want to split the respective tracks. For
this purpose, click on the Vertical split iteminthe Oscilloscope toolbar.

Oscilloscope 1 x

ElElEEIES Y= N =A==

Oscilloscope 7 x

DHE EAEE O e FSH

lit

9.2.5.4 VIEWING SAMPLES

If you click on the Show samples iteminthe 0Scilloscope toolbar, the tool highlights the single values
detected during data acquisition.

Oscilloscope 1 x

E.E FEBEAAOD 0 EHE

You can click on the same item again, in order to go back to the default view mode.

(]
102 <> walvoil D1WWTEO6E

PHC STUDIO

Oscilloscope ax

BHE B XEERED s g S

9.2.5.5 TAKING MEASURES

The Oscilloscope includes two measure bars, which can be exploited to take some measures on the chart; in
order to show and hide them, click on the Show measure bars iteminthe 0scilloscope toolbar.

Oscilloscope 1 x

IHE B RaB Xxdan e S

If you want to measure a time interval between two events, you just have to move one bar to the point in the
graph that corresponds to the first event and the other to the point that corresponds to the second one.

Oscilloscope R x

HAEH X e & SE

You can use a measure bar also to read the value of all the variables in the Oscilloscope at a particular moment:
move the bar to the point in the graph which corresponds to the instant you want to observe.

(]
D1WWTEOQGE o walvoil

PHC STUDIO

Oscilloscope

IR =l

Red curser Blue cursc

9.2.5.6 OSCILLOSCOPE SETTINGS

You can further customize the appearance of the Oscilloscope by clicking on the Graph properties item
in the toolbar.

KD e ¥ & H

In the window that pops up you can choose whether to display or not the Background grid, the Time
slide bar, andthe Track 1ist.

(]
104« <> walvoil D1WWTEO6E

-
Oscilloscope settings

A, Sample
Shiow time bar Harizark
Show tracks list Buffer =i

9.2.6 CHANGING THE POLLING RATE

PHC STUDIO

PHC Studio periodically sends queries to the target device, in order to read the data to be plotted in the Oscil-

loscope.
The polling rate can be configured by following this procedure:

1) Click on the Graph properties item in the toolbar.

o ox

m(m» &

i Graph properties

2) In the window that pops up edit the Sampling polling rate.

-
Oscilloscope settings

Show grid Sample polling rate 110 Mz

Horizontal scale 100d rivsd div

Show time bar

Show tracks list Buffer size 40000 samples
Tracks list
M ame [t Walue/div Offzet

3) Confirm your decision.

=)

Feal rate
2257

Hide
1

Note that the actual rate depends on the performance of the target device (in particular, on the performance of
its communication task). You can read the actual rate in the 0scilloscope settings window.

Sample pallitg rake |10 ms Real rate
Horizontal scale 1000 i dive [22.57

Buffer size 40000 zamples

9.2.7 SAVING AND PRINTING THE GRAPH
PHC Studio allows you to persist the acquisition either by saving the data to a file or by printing a view of the
data plotted in the Oscilloscope.

9.2.7.1 SAVING DATA TO A FILE

You can save the samples acquired by the Oscilloscope to a file, in order to further analyze the data with other

tools.
1) You may want to stop acquisition before saving data to a file.

2) Click onthe Save tracks data into file inthe Oscilloscope toolbar.

D1WWTEOG6E

o walvoil s

zzzzzzzzzzz |IMoTion

PHC STUDIO

3) Choose between the available output file format: osc is a simple plain-text file, containing time and value
of each sample; OSCX is an XML file, that includes more complete information, which can be further ana-
lyzed with another tool, provided separately from PHC Studio.

[Oscillusr_upe XML files (*.O5CK) v]
Oscilloscope XML files (*.05CX)

All files (%) |/\\>
4) Choose a file name and a destination directory, then confirm the operation.
9.2.7.2 PRINTING THE GRAPH

Follow this procedure to print a view of the data plotted in the Oscilloscope:
1) Either suspend or stop the acquisition.

[55 0] m o (6] eS|

[

2) Move the time slide bar and adjust the zoom, in order to include in the view the elements you want to print.

Oscilloscope L x

HHEAHE B &S FBHEE0 00 v & SH

Min value Max value Curvalue w/div Red cur

S.HMISTEP

3) Clickonthe Print graph item.

(]
10e <> walvoil D1WWTEO6E

PHC STUDIO

9.3 EDIT AND DEBUG MODE

While both the Watch window and the Oscilloscope do not make use of the source code, all the other debug-
gers do: when debug mode is on, changes to the source code are inhibited and debug tools become active.

PHC Studio automatically enables debug mode when at least one of the following conditions are met:
- at least one breakpoint is correctly set.

- At least one trigger (graphic or textual) is correctly set.

- Live debug mode is on.

When all the conditions above are not met, the debug mode automatically switches off and PHC Studio enters
in edit mode.

The status bar shows whether the debug mode is active or not.

pJ3:JY0I)3 SOURCEOK | CONNECTED

Note that you cannot enter the debug mode if the connection status differs from Connected.

9.4 LIVE DEBUG

PHC Studio can display meaningful animation of the current and changing state of execution over time of a Pro-
gram Organization Unit (POU) coded in any IEC 61131-3 programming language.

To switch on and off the live debug mode, you may click & Debug>Live debug mode .

9.4.1 SFC ANIMATION

As explained in the relevant section of the language reference, an SFC POU is structured in a set of steps, each
of which is either active or inactive at any given moment. Once started up, this SFC-specific debugging tool
animates the SFC documents by highlighting the active steps.

Animation OFF Animation ON Animation ON in hold status
Init Init Init
TRUE [] mrRue TRUE

51 53 s S3 51 53

21[P] 21[P] 21[P] 21[P]

A2[N] A2[N] Az A2[N] A2[N]
Serivival # CtriDown [] serivival [] ctrioown # Serivival # CtriDown
52 54 s2 54 52 54

2[P] A2[N] 21[P] A2[N] 2[P] 22[N]

T T T T T T

[]
D1WWTEO6E o walvoil 1o

nnnnnnnnnnn |IMoTion

PHC STUDIO

9.4.1.1

9.4.2

9.4.3

In the left column, a portion of an SFC network is shown, diagram animation being off.

In the middle column the same portion of network is displayed when the live debug mode is active. The picture
in the middle column shows that steps s1 and s3 are currently active, whereas Init, s2, and s4 are inactive.

In the right column the same portion of network is displayed with steps s1 and s3 that are currently active but
in hold status.

This may occur in SFC blocks when they are children of a parent in inactive status.

Note that the SFC animation manager tests periodically the state of all steps, the user not being allowed to
edit the sampling period. Therefore, it may happen that a step remains active for a slot of time too short to be
displayed.

The fact that a step is never highlighted does not imply that its action is not executed, it may simply mean that
the sampling rate is too slow to detect the execution.

DEBUGGING ACTIONS AND CONDITIONS

As explained in the SFC language reference, a step can be assigned to an action, and a transition can be associ-
ated with a condition code. Actions and conditions can be coded in any of the IEC 61131-3 languages. General-
purpose debugging tools can be used within each action/condition, as if it was a stand-alone POU.

LD ANIMATION

In live debug mode, Ladder Diagram schemes are animated by highlighting the contacts and coils whose value
is true (in the example, i1 and i2).

ooz
foDelay
inpLogicData TOH outDelayed
I N a

1000 o

parTimonDelay T T parTmOnValue

Note that the LD animation manager tests periodically the state of all the elements. It may happen that an ele-
ment remains true for a slot of time too short to be displayed on the video. The fact that an element is never
highlighted does not imply that its value never becomes true (the sampling rate may be too slow).

FBD ANIMATION

In live debug mode, PHC Studio displays the values of all the visible variables directly in the graphical source
code editor.

PID regulator

fbPid PID regulation is OK if target is inside threshold

FT_PID pidOutput|-10.6732
-10.7082 | pidFeedback actual Y ABS LE
-10] pidSetpoint set_point diff = outPidOk | FALSE
neise |~ o oo

offset overflow outPidOverflow | FALSE

t ottt

e [FPHRESE >
i bana
8 L S—
0.1[pidKl_——————————— TN
o
- {imit_L
= mit_H

This works for both FBD and LD programming language.

108 e uwalvoil

uuuuuuuuuuu [MoTionN

D1WWTEOG6E

PHC STUDIO

inpLogicData
I N a

1000

parTimOnDelay ET

Note that, once again, this tool is asynchronous.

9.4.4 IL AND ST ANIMATION

The live debug mode also applies to textual source code editors (the ones for IL and ST). You can quickly watch
the values of a variable by hovering with the mouse over it.

0001
0002

0003 (* Analog output 0 = analog inp 0 + analog inp 1 *)
0004

0005 aoutl = ainpl + ainpl;

0006

0ooz (* SFC state logic =)

0008

[T fbStati(emab := inpl0. run := inpll, stop := inplZ 3.
0010

0011 cht = oot + 1

0012

ggig 29133

9.5 TRIGGERS
9.5.1 TRIGGER WINDOW

The Trigger window tool allows you to select a set of variables and to have them updated synchronously
in a special pop-up window.

9.5.1.1 PRE-CONDITIONS TO OPEN A TRIGGER WINDOW

No need for special compilation

PHC Studio debugging tools operate at run-time. Thus, unlike other programming languages such as C++, the
compiler does not need to be told whether or not to support trigger windows: given a PLC code, the compiler’s
output is unique, and there is no distinction between debug and release version.

Memory availability

A trigger window takes a segment in the application code sector, having a well-defined length. Obviously, in
order to start up a trigger window, it is necessary that a sufficient amount of memory is available, otherwise an
error message appears.

Incompatibility with graphic trigger windows

A graphic trigger window takes the whole free space of the application code sector. Therefore, once such a
debugging tool has been started, it is not possible to add any trigger window, and an error message appears if
you attempt to start a new window. Once the graphic trigger window is eventually closed, trigger windows are
enabled again.

Note that all the trigger windows existing before the starting of a graphic trigger window keep working normally.
You are simply not allowed to add new ones.

9.5.1.2 TRIGGER WINDOW TOOLBAR

Trigger window icons are part of the Debug toolbar and are enabled only if PHC Studio is in debug mode.

+ o W 5

[]
D1WWTEO6E o walvoil o

nnnnnnnnnnn |IMoTion

PHC STUDIO

Button Command Description

In order to actually start a trigger window, select the point of
the PLC code where to insert the relative trigger and then press
this button. The same procedure applies to trigger window
removal: in order to definitely close a debug window, click
once the instruction/block where the trigger was inserted, then
press this button again.

* Set/Remove trigger

This button operates exactly as the above Set/Remove

trigger, except for that it opens a graphic trigger window. It
El Graphic trace can be used likewise also to remove a graphic trigger window.

Shortcut key: pressing Shift + F9is equivalent to clicking
on Set/Remove trigger button.

Pressing this key causes all the existing trigger windows and
*{ Remove all the graphic trigger window to be removed simultaneously.

triggers Shortcut key: pressing Ctr1+Shift+F9 is equivalent to
clicking on this button.

This key opens a dialog listing all the existing trigger windows.

Trigger list Shortcut key: pressing Ctr1+1I is equivalent to clicking on
this button.

(~
Trigger list ﬁ
Type Module Line Open

W

G Syst 1
T RMS U
P "
T Slan -1

e

Each record refers to a trigger window, either graphic or textual. The following table explains the meaning of
each field.

Field Description

T: trigger window.

Type
G: graphic trigger window.

Name of the program, function, or function block where the trigger is
Module placed. If the module is a function block, this field contains its name, not
the name of its instance where you actually put the trigger.

For the textual languages (IL, ST) indicates the line in which the trigger is

Line placed. For the other languages the value is always - 1.

(]
110 e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

9.5.1.3

TRIGGER WINDOW INTERFACE

Setting a trigger causes a pop-up window to appear, which is called Interface window: this is the interface
to access the debugging functions that the trigger window makes available. It consists of three elements, as

shown below.

Trigger n” 0 at MAIN#6

=

Trigger

s I Ac

Condition |

Symbaol

Type

Caption bar

The Caption bar of the pop-up window shows information on the location of the trigger which causes the

refresh of the Variables window, when reached by the processor.
The text in the Caption bar has the following format:

Trigger n° X at ModuleName#Location

where

X Trigger identifier.
ModuleName Egr:eed.of the program, function, or function block where the trigger was
Exact location of the trigger, within module ModuleName.
If ModuleName isinIL, Location has the following format:
N1
Otherwise, if ModuleName is in FBD, it becomes:
Location N2$BT:BID
where:
N1 = instruction line number
N2 = network number
BT = block type (operand, function, function block, etc.)
BID = block identifier

Controls section

This dialog box allows the user to better control the refresh of the trigger window to get more information on
the code under scope. A detailed description of the function of each control is given in the Trigger window

controls section (see Paragraph 9.5.2.11).

All controls except Ac, the Accumulator display button, are not accessible until at least one variable is

dragged into the debug window.

The Variables section

This lower section of the Debug window is a table consisting of a row for each variable that you dragged in.

D1WWTEOG6E

o walvoil 1::

nnnnnnnnnnn |IMoTion

PHC STUDIO

9.5.1.4

9.5.1.5

Each row has four fields: the name of the variable, its value, its type, and its location (@task:ModuleName) read
from memory during the last refresh.

TRIGGER WINDOW: DRAG AND DROP INFORMATION

Trigger n® 0 at MAIN#6 @
EECEE
Condition |
Mone
Trigger Far events
After
Symbol Value Type
—_ 10 UINT
mm B TRUE BOOL

To watch a variable, you need to copy it to the lower section of the Debug window.

This section is a table consisting of a row for each variable you dragged in. You can drag into the trigger window
only variables local to the module where you placed the relative trigger, or global variables, or parameters. You
cannot drag variables declared in another program, or function, or function block.

REFRESH OF THE VALUES

Let us consider the following example.

Trigger n* 0 at MAINIL#S5

=

(L1}

=R
Condition |
oool LD
nooz ST Mane
g g g i D Trigger For Bvents
UUws =T After
0ooa
aooz LD
noog ST Symboal Value Type
0003 —a 1 UINT

The value of variables is refreshed every time the window manager is triggered, that is every time the processor
executes the instruction marked by the green arrowhead. However, you can set controls in order to have vari-
ables refreshed only when triggers satisfy the more limiting conditions you define.

Note that the value of the variables in column Symbo1 is read from memory just before the marked instruction
(in this case: the instruction at line 5) and immediately after the previous instruction (the one at line 4) has

been performed.

Thus, in the above example the second ST statement has not been executed yet when the new value of a is read
from memory and displayed in the trigger window. Thus the result of the second ST a is 1.

112 e uwalvoil

uuuuuuuuuuu [MoTionN

D1WWTEOG6E

PHC STUDIO

9.5.1.6 TRIGGER WINDOW CONTROLS

This paragraph deals with the trigger window controls, which allows you to better supervise the working of this
debugging tool, to get more information on the code under scope.

Trigger window controls act in a well-defined way on the behavior of the window, regardless for the type of the
module (either IL or FBD) where the related trigger has been inserted.

All controls except the Accumulator display are not accessible until at least one variable is dragged into
the Variables window.

Window controls are made accessible to users through the grey top half of the debug window.

Trigger n* 0 at MAIN#6 @
I Ac Cnt: 1}
Condition |
Mare
Trigger For = events
After
Symbol Value Type
]] b
Button Command Description

This control is used to start a triggering session. If system is
— triggering you can click this button to force stop. Otherwise
= Start/Stop session automatically stops when conditions are reached. At
this point you can press this button to start another triggering
session.

This control is used to execute a single step trigger. It is
enabled only when there is no active triggering session and

Single ste
g g p None is selected. Specified condition is considered. After the

execution single step trigger is done, triggering session automatically
stops.
This control adds the Accumulator to the list of variables
already dragged into the trigger window. A new row is added
.I‘-ﬂ. Accumulator at the bottom of the table of variables, containing the string
C display Accumulator in column Symbol, the accumulator’s value

in column Value, Type is not specified and Locationis
set to global as shown in the following figure.

[]
D1WWTEO6E o walvoil i

nnnnnnnnnnn |IMoTion

PHC STUDIO

I Resources "] main

Local variables

Name Type Address Array Init value Aftribute Description
1]a INT Ao _|No

000l LD 1

0002 ST & Trigger n” 0 at MAINEG =
0003, LD 2 =

0004 ST a o Ac te: 0
0oos, ID 3

0006 ST & Condition

Mone
| Trigger Far & events
— After
— Symbol Value Type
— — A 1 UINT
— ACCUMULATOR 2

-] [3

In order to remove the accumulator from the table, click its name in Symbo 1 column, and press the Del key.

This control can be very useful if a trigger was inserted before a ST statement, because it allows you to know
what value is being written in the destination variable, during the current execution of the task. You can get the
same result by moving the trigger to an instruction following the one marked by the green arrowhead.

Trigger counter
Cnt : a7

This read-only control counts how many times the debug window manager has been triggered, since the window
was installed.

The window manager automatically resets this counter every time a new triggering session is started.

Trigger state

This read-only control shows the user the state of the Debug window. It can assume the following values.

HE-EId_',I The trigger has not occurred during the current task execution.

Triggered The trigger has occurred during the current task execution.

System is not triggering. Triggering has not been started yet or it has been
stopped by user or an halt condition has been reached.

Communication with target interrupted, the state of the trigger window cannot
be determined.

User-defined condition

Condition | I:I

If you define a condition by using this control, the values in the Debug window are refreshed every time the
window manager is triggered and the user-defined condition is true.

After you have entered a condition, the control displays its simplified expression.

Candition |4 GT 100 |:|

(]
112 e walvoil D1WWTEO6E

uuuuuuuuuuu [MoTionN

PHC STUDIO

Counters

(®) Mone
Trigger () Far | ewents

() After

These controls allow the user to define conditions on the trigger counter.
The trigger window can be in one of the following three states.

- None: no counter has been started up, thus no condition has been specified upon the trigger.

- For: assuming that you gave the counter limit the value N, the window manager adds I to the current value
of the counter and refreshes the value of its variables, each time the debug window is triggered. However,

when the counter equals N, the window stops refreshing the values, and it changes to the Stop state.

- After: assuming that you gave the counter limit the value N, the window manager resets the counter and

adds 1 to its current value each time it is triggered. The window remains in the Ready state and does not
update the value of its variables until the counter reaches .

9.5.2 DEBUGGING WITH TRIGGER WINDOWS
9.5.2.1 INTRODUCTION
The trigger window tool allows the user to select a set of variables and to have their values displayed and up-

dated synchronously in a pop-up window. Unlike the Watch window, trigger windows refresh simultaneously
all the variables they contain, every time they are triggered.

9.5.2.2 OPENING A TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

uuul
nooz LD a
ooz ADD b
noo4 5T a
noos
0006 LD o
noo? ADD d
noog ST o
noog
no1ao LD k
no11 ADD 1
no1z ST o
nnia

Let us also assume that you want to know the value of b, d, and k, just before the ST K instruction is executed.
To do so, move the cursor to line 12.

uuud
0010 LD Lk
o011 ADD 1
oniz ST W
nniz

Then you can click # Debug>Set/Remove trigger .
In both cases, a green arrowhead appears next to the line number, and the related trigger window pops up.

Not all the IL instructions support triggers. For example, it is not possible to place a trigger at the beginning of
a line containing a Jvp statement.

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

9.5.2.3 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN IL MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this purpose, select a
variable by double-clicking it, and then drag it into the Variables window, that is the lower white box in the
pop-up window. The variable’s name now appears in the Symbol column.

LD & = :
é?D — Trigger n° 0 at MAIN#1 1%
a | - |
{[E] s ac Crt: 14805 [Triggered ||
IO o £ -
ADD d Condition |
ST o
@ Mone
D k : S
ADD 1 Trigger () Far [B evms
STk () After
Value
0

The same procedure applies to all the variables you wish to inspect.

9.5.2.4 OPENING A TRIGGER WINDOW FROM AN FBD MULE

Let us assume that you have an FBD module, also containing the following instructions.

0003

>

Let us also assume that you want to know the values of ¢, D, and k, just before the ST k instruction is executed.

(]
116 <> walvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

Provided that you can never place a trigger in a block representing a variable such as

e

you must select the first available block preceding the selected variable. In the example of the above figure, you
must move the cursor to network 3, and click the ADpD block.

You can click ® Debug>Set/Remove trigger .

In both cases, the color of the selected block turns to green, a white circle with a number inside appears in the
middle of the block, and the related trigger window pops up.

ADD
+
>
000z
>
ADD
=+
>
0003
k>
() =
>

When preprocessing FBD source code, the compiler translates it into IL instructions. The ADD instruction in
network 3 is expanded to:

LD k
ADD 1

ST k

When you add a trigger to an FBD block, you actually place the trigger before the first statement of its IL equiva-
lent code.

9.5.2.5 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let us assume that you want
to inspect the value of variable k of the FBD code in the figure below.

To this purpose, click ‘A Edit>Watch mode .
The cursor will become as follows.

A

Now you can click the block representing the variable you wish to be shown in the trigger window.

[]
D1WWTEO6E o walvoil 1/

nnnnnnnnnnn [MoTian

PHC STUDIO

In the example we are considering, click the button block.

(K -

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

g »
Debug windows list u

Symbol to add.
k

B
B

Debug windows

“Wwiatch

Decilloscope

Trigger n* 0 at TRIGGERSH3$0:1

0003

-—- -

In order to display the variable k in the trigger window, select its reference in the Debug windows column,
then press OK. The name of the variable is now printed in the SymboT column.

B

.9 9

Trigger n° 0 at TRIGGERS#350:1 =

(N

= Cnt: 3896
Condition |:|

Nane
Trigger Far ZI events
After

Symbol Value Type
- K 61830 UINT

0003

° & l 1 3

L L A VA A

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
Iz Edit>Insert/Move mode , so as to let the cursor take back its original shape.

(]
113 <> walvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

9.5.2.6 OPENING A TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

?

nooz

You can place a trigger on a block such as follows.

ADD
EN ENC

+

In this case, the same rules apply as to insert a trigger in an FBD module on a contact

1t

or a coil

{ ¥

In this case, follow the SE instructions. Let us also assume that you want to know the value of some variables
every time the processor reaches network number 1.

First you must click one of the items making up network number 1. Now you can click
* Debug>Add/Remove text trigger .

In both cases, the grey raised button containing the network number turns to green, and a white circle with
the number of the trigger inside appears in the middle of the button, while the related trigger window pops up.

o walvoil 1

DIWWTEOGE e e ImaTion

PHC STUDIO

Trigger n* 0 at MAIN#1$ =
O Ac o 0 [stop |
Condition | &)

MHone
Trigger Far :I events
After
Symbol Value Type
O —— ,

Unlike the other languages supported by PHC Studio, LD does not allow you to insert a trigger into a single con-
tact or coil, as it lets you select only an entire network. Thus the variables in the trigger window will be refreshed
every time the processor reaches the beginning of the selected network.

9.5.2.7 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN LD MODULE
In order to watch the value of a variable, you need to add it to the trigger window. Let us assume that you want
to inspect the value of variable b in the LD code represented in the figure below.
To this purpose, click = Edit>Watch mode .
The cursor will become as follows.

A

Now you can click the item representing the variable you wish to be shown in the trigger window.

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

Trigger n° 0 at MAINZ1S

Debug windows list

Symbol (o add
5

Debug windows Type

Watch
Ossilascops

Trigger i 0 at MAINHTS

%r
[l

In order to display variable B in the trigger window, select its reference in the Debug window column, then
press OK.
The name of the variable is now printed in the Symbol column.

(]
120 <> walvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

Trigger n® 0 at MAIN£1§, =]
. N ERCEE
L
! Condiion =
Mone
Trigger For [=] events
e Siter
Symbol Value Type
B FALSE BOOL
Ll E—— '

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
: Edit>Insert/Move mode , so as to restore the original shape of the cursor.

9.5.2.8 OPENING A TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

0001

ooo2 a :=b = b;

0oo3 c = c + SHE({ a. 1le#04):
0004

o005 d =g =% &g;

0006 f := f + SHE(d. 1e#04):
ooo?

Let us also assume that you want to know the value of e, d, and £, just before the instruction
f := f+ SHR(d, 16#04)
is executed. To do so, move the cursor to line 6.

Then you can click # Debug>Add/Remove text trigger .
In both cases, a green arrowhead appears next to the line number, and the related trigger window pops up.

Trigger n° 0 at MAINST#6
o0l = I Ac iz @ m—l
ooz a =b * b .
0003 o i=c + SHR (a, 16#04): Condion |
0004 "
0005 d = e =*e: one
0006 - f :=f + SHR (d, 16404): Trigger Fer =] events

After
Symbol Value Type

Not all the ST instructions support triggers. For example, it is not possible to place a trigger on a line containing
a terminator such as END_IF, END FOR, END WHILE, etc..

[]
D1WWTEO6E o walvoil ::

FLuIiD POwWER E[MOTION

PHC STUDIO

9.5.2.9 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN ST MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this purpose, select a
variable, by double clicking it, and then drag it into the VariabTes window, that is the lower white box in the
pop-up window. The variable name now appears in the SymboT column.

Trigger n* 0 at MAINST#6 =]
0001 (2] Ac Oiti: & E
aooz a = b = b; -
0003 c i= c + SHR (a, 16#04); Condiion | CJ
ooo4 @ N
aoos d = e % =; @ Mone
0006 £ = 1f + SHR (d. 1e6#04): Trigger) For 2] ewvents
() After
Symbol Value Type
—F 0 UDINT
‘ T b

The same procedure applies to all the variables you wish to inspect.

9.5.2.10 REMOVING A VARIABLE FROM THE TRIGGER WINDOW

If you want a variable not to be displayed any more in the trigger window, select it by clicking its name once,
then press the Del key.

9.5.2.11 USING CONTROLS

This paragraph deals with trigger windows controls, which allow you to better supervise the working of this
debugging tool to get more information on the code under scope. The main purpose of trigger window controls

is to let you define more limiting conditions, so that variables in Variables window are refreshed when the
processor reaches the trigger location and these conditions are satisfied. If you do not use controls, variables
are refreshed every single time the processor reaches the relative trigger.

Enabling controls

When you set a trigger, all the elements in the Control window look disabled.

Sorae o o

Condition |
Mare

Trigger Far 2l events
After

As a matter of fact, you cannot access any of the controls, except the Accumulator display, until at least
one variable is dragged into the Debug window. When this happens triggering automatically starts and the
Controls window changes as follows.

& Ac Cnt: 1663
Condition | G

) Mone

Trigger @) Far + ewents

() Alter

(]
122 e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

Triggering can be started/stopped with the apposite button.

Fixing the number of refresh

If you want the values to be refreshed the first time the window is triggered, select None, and press the single
step button, otherwise set the counter to I and select For.

If you want the values to be refreshed the first X times the window is triggered, set the counter to X and select
For.

If you want the values to be refreshed after Y times the window is triggered, set the counter to Y and select
After.
Triggers and conditions settings become the actual settings when the triggering is (re)started.

Watching the accumulator

As stated in the Refresh of values section (see Paragraph 9.5.1.5), when you insert a trigger on
an instruction line, you establish that the variables in the relative debugging window will be up-
dated every time the processor reaches that location, before the instruction itself is executed.
In some cases, for example when a trigger is placed before a ST statement, it can be useful to know the value
of the accumulator. This allows you to forecast the outcome of the instruction that will be executed after all the
variables in the trigger window have been updated. To add the accumulator to the trigger window, click on the

Accumulator display button.
Defining a condition

This control enables users to set a condition on the occurrences of a trigger. By default, this condition is set to
TRUE, and the values in the debug window are refreshed every time the window manager is triggered.

If you want to put a restriction on the refreshment mechanism, you can specify a condition by clicking on the

apposite button.

When you do so, a text window pops up, where you can write the IL code that sets the condition.

F ™y
Trigger condition ﬁ
LD a -

GT 100
4 I

Once you have finished writing the condition code, click the OK button to install it, or press the £SC button to
cancel. If you choose to install it, the values in the debug window are refreshed every time the window manager
is triggered and the user-defined condition is true.

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

A simplified expression of the condition now appears in the control.

Condition [& GT 100 |:|

To modify it, press again the above mentioned button.

]

The text window appears, containing the text you originally wrote, which you can now edit.
To completely remove a user-defined condition, delete the whole IL code in the text window, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE or FALSE), other-
wise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code. Namely, all variables local to
the module where the trigger was originally inserted are out of scope, if they have not been dragged into the
debug window. No new variables can be declared in the condition window.

9.5.2.12 CLOSING A TRIGGER WINDOW AND REMOVING A TRIGGER

This web page deals with what you can do when you finish a debug session with a trigger window. You can
choose between the following options.

- Closing the trigger window.

- Removing the trigger.

- Removing all the triggers.

Notice that the actions listed above produce very different results.

Closing the trigger window

If you have finished watching a set of variables by means of a trigger window, you may want to close the Debug
window, without removing the trigger. If you click the button in the top right-hand corner, you just hide the
interface window, while the window manager and the relative trigger keep working.

As a matter of fact, if later you want to resume debugging with a trigger window that you previously hid, you
just need to open the Trigger 1ist window, to select the record referred to that trigger window, and to
click the Open button.

' B
Trigger list ﬂ
Type Module Line [{ Open '
FIDCOMTROL 1 -
e . Remave

Remaove all

¢ |

The interface window appears with value of variables and trigger counter updated, as if it had not been closed.

Removing a trigger

If you choose this option, you completely remove the code both of the window manager and of its trigger. To this
purpose, just open the Trigger 1ist window, select the record referred to the trigger window you want to
eliminate, and click the Remove button.

122 e uwalvoil

uuuuuuuuuuu marian D1WWTEO6E

PHC STUDIO

-
Trigger list

lfs

Type Module Line Open

Remove

Femove all

FIDCONTROL -1

| 0

(8

Alternatively, you can move the cursor to the line (if the module is in IL or ST), or click the block (if the module
is in FBD or LD) where you placed the trigger. Now press the Set/Remove trigger button in the Debug

toolbar.
Removing all the triggers

Alternatively, you can remove all the existing triggers at once, regardless for which records are selected, by
clicking on the Remove all button.

F B
Trigger list ﬁ
Type Module Line [Open]
FIDCONTROL -1
Remove
Benors]

(| Remove al

i

9.6 GRAPHIC TRIGGERS
9.6.1 GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them sampled synchronously
and to have their curve displayed in a special pop-up window.

Sampling of the dragged-in variables occurs every time the processor reaches the position (i.e. the instruction
- if IL, ST - or the block - if FBD, LD) where you placed the trigger.

9.6.1.1 PRE-CONDITIONS TO OPEN A GRAPHIC TRIGGER WINDOW

No need for special compilation

All the PHC Studio debugging tools operate at run-time. Thus, unlike other programming languages such as
C++, the compiler does not need to be told whether or not to support trigger windows: given a PLC code, the
compiler’s output is unique, and there is no distinction between debug and release version.

Memory availability

A graphic trigger window takes all the free memory space in the application code sector. Obviously, in order to
start up a trigger window, it is necessary that a sufficient amount of memory is available, otherwise an error
message appears.

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

9.6.1.2 GRAPHIC TRIGGER WINDOW INTERFACE

Setting a graphic trigger causes a pop-up window to appear, which is called Interface window. This is the
main interface for accessing the debugging functions that the graphic trigger window makes available. It con-
sists of several elements, as shown below.

pcoNTROL#1$ (1) =

-B000

Min value Mazx value Cur value v/div Red cursor E

1. Caption bar 2. Controls bar 3. Chart area 4. Variables window

The caption bar

The Caption bar at the top of the pop-up window shows information on the location of the trigger which
causes the variables listed in the Variables window to be sampled.

The text in the caption has the following format:

ModuleName#Location

Where
ModuleName Name of program, function, or function block where the trigger was placed.
Exact location of the trigger, within module ModuleName.
If ModuleName is in IL, ST, Location has the format:
N1
Otherwise, if ModuleName is in FBD, LD, it becomes:
Location N2S$BT:BID

N1 = instruction line number
N2 = network number
BT = block type (operand, function, function block, etc.)
BID = block identifier

(]
126 e walvoil D1WWTEO6E

PHC STUDIO

This dialog box allows you to better control the working of the graphic trigger window. A detailed description

of the function of each control is given in the Graphic trigger window controls section (see Paragraph
9.6.1.5).

The Controls bar

The Chart area

The Chart area includes six items:
1) Plot: area containing the actual plot of the curve of the dragged-in variables.
2) Samples to acquire: number of samples to be collected by the graphic trigger window manager.

3) Horizontal cursor: cursor identifying a horizontal line. The value of each variable at the intersection with
this line is reported in the column horz cursor.

4) Blue cursor: cursor identifying a vertical line. The value of each variable at the intersection with this line is
reported in the column Teft cursor.

5) Red cursor: same as blue cursor.

6) Scroll bar: if the scale of the x-axis is too large to display all the samples in the P10t area, the scroll bar
allows you to slide back and forth along the horizontal axis.

The Variables window

This lower section of the Debug window is a table consisting of a row for each variable that you have dragged
in. Every row has several fields, which are described in detail in the Drag and drop information section.

9.6.1.3 GRAPHIC TRIGGER WINDOW: DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

PIDCONTROL#1$ =)

-B000
S —

Min value Max value Cur value w/idiv Red cursor E

1. Variables window

This lower section of the Debug window is a table consisting of a row for each variable that
you dragged in. Each row has several fields, as shown in the picture below.

(]
D1WWTEOQGE o walvoil 2/

PHC STUDIO

PIDOUTPUT
PIDFEED

Max value
11.964
10.710

Um Min value
-11.963
-10.710

Cur value v/ div Red cursor Blue cursor

Field Description
Track Name of the variable.
Um Unit of measurement.
Min value | Minimum value in the record set.
Max value Maximum value in the record set.
Cur value | Current value of the variable.
v/div How many engineering units are represented by a unit of the y-axis

(i.e. the space between two ticks on the vertical axis).

Value of the variable at the intersection with the line identified by the

Blue cursor blue cursor.

Value of the variable at the intersection with the line identified by the

Red cursor red cursor.

Value of the variable at the intersection with the line identified by the

Horz cursor horizontal cursor.

Note that you can drag into the graphic trigger window only variables local to the module where you placed the
relative trigger, or global variables, or parameters. You cannot drag variables declared in another program, or
function, or function block.

9.6.1.4 SAMPLING OF VARIABLES

Let us consider the following example.

The value of the variables is sampled every time the window manager is triggered, that is every time the pro-
cessor executes the instruction marked by the green arrowhead. However, you can set controls in order to have
variables sampled when triggers also satisfy further limiting conditions that you define.

The value of the variables in the column Track is read from memory just before the marked instruction and
immediately after the previous instruction.

9.6.1.5 GRAPHIC TRIGGER WINDOW CONTROLS

This paragraph deals with controls of the Graphic trigger window. Controls allow you to specify in detail
when PHC Studio is supposed to sample the variables added to the Variables window.

Graphic trigger window controls act in a well-defined way on the behavior of the window, regardless for the type
of the module (IL, ST, FBD or LD) where the related trigger has been inserted.

Window controls are made accessible to users through the Controls bar of the debug window.

EEEEEEE =R IEEEL o S|

065535

128 e uWwalvoil

nnnnnnnnnnn IMoTion

D1WWTEOG6E

PHC STUDIO

Button Command Description
. When you push this button down, you let acquisition start.
Start graphic Now, if acquisition is running and you release this button, you
trace stop the sample collection process, and you reset all the data

you have acquired so far.

The two cursors (red cursor, blue cursor) may be seen and

Enable/Disable moved along their axis as long as this button is pressed.
cursors Release this button if you want to hide simultaneously all the
cursors.

This control is used to put in evidence the exact point in which

Show samples the variables are triggered at each sample.

When pressed, this control splits the y-axis into as many
Split variables segments as the dragged-in variables, so that the diagram of
each variable is drawn in a separate band.

It is used to fill in the graph window all the values sampled for

Show all values the selected variables in the current record setrecord set.

Zooming in is an operation that makes the curves in the

. Chart area appear larger on the screen, so that greater
Horizontal Zoom In | detail may be viewed. Zooming out is an operation that makes
and Zoom Out the curves appear smaller on the screen, so that it may

be viewed in its entirety. Horizontal zoom acts only on the
horizontal axis.

This control is used to horizontally center record set samples.
So first sample will be placed on the left margin, and last will
be placed on the right margin of the graphic window.

Horizontal show
all

Vertical Zoom In

Vertical Zoom acts only on the vertical axis.
and Zoom Out 4

This control is used to vertically center record set samples. So
max value sample will be placed near top margin and low value
sample will be placed on the bottom margin of the graphic
window.

s RO R E R

Vertical show all

Pushing this button causes a tabs dialog box to appear, which
Graphic trigger allows you to set general user options affecting the action of

. . the graphic trigger window. Since the options you can set are
window properties | guite numerous, they are dealt with in a section apart. Click
here to access this section.

Push this button to print both the Chart area and the

Print chart Variables window.

i |

Save chart Press this button to save the chart.

Trigger counter
Cnt: 25400

This read-only control displays two numbers with the following format: x/v.

x indicates how many times the debug window manager has been triggered, since the graphic trigger was in-
stalled.

Y represents the number of samples the graphic window has to collect before stopping data acquisition and
drawing the curves.

[]
D1WWTEO6E o walvoil -

nnnnnnnnnnn |IMoTion

PHC STUDIO

Trigger state

This read-only control shows you the state of the Debug window. It can assume the following values.

No sample(s) taken, as the trigger has not occurred during the current task
Ready execution.

. Sample(s) collected, as the trigger has occurred during the current task
Triggered | POSCe

The trigger counter indicates that a number of samples has been collected
m satisfying the user request or memory constraints, thus the acquisition

process is stopped.

Communication with target interrupted, the state of the trigger window cannot
be determined.

9.6.1.6 GRAPHIC TRIGGER WINDOW OPTIONS

In order to open the options tab, you must click the Properties button in the Controls bar. When you do
this, the following dialog box appears.

General
Syncronous osdilloscope settings ﬂ]
Show grid Horizontal scale 500 zamples/div
Show time bar Buffer size ERRIG zamples [max. B5A35]
Shiow tracks list Condition E
Tracks list
Narme Uit Waluediv Offset Hide:
P&RPULSEWIDTH 1 0 o
el
Control

Control Description
Show grid |Tick this control to display a grid in the Chart area background.

Show time The scroll bar at the bottom of the Chart area is available as long
bar as this box is checked.

Show tracks The Variables window is shown as long as this box is checked,

Tist otherwise the Chart area extends to the bottom of the graphic
trigger window.

(]
130 e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

Values

Control

Description

Horizontal

scale Number of samples per unit of the x-axis. By unit of the x-axis the
Unil of the x-dxis space is meant between two vertical lines of the background grid.
—

Number of samples to acquire. When you open the option tab, after
having dragged-in all the variables you want to watch, you can read

Buffer size |a default number in this field, representing the maximum number of

samples you can collect for each variable. You can therefore type a
number which is less or equal to the default one.

Tracks

This tab allows you to define some graphic properties of the plot of each variable. To select a variable, click its

name in the Track 1ist column.

Control Description
Unit Unit of measurement, printed in the table of the /ariables window.
Value/div A value per unit (_)f the y-_axis. By unit of the y-axis_ is meant the space
between two horizontal lines of the background grid.
Hide Check this flag to hide selected track on the graph.

Push App 1y to make your changes effective, or push OK to apply your changes and to close the options tab.

User-defined condition

If you define a condition by using this control, the sampling process does not start until that condition is satis-
fied. Note that, unlike trigger windows, once data acquisition begins, samples are taken every time the window
manager is triggered, regardless of the user condition being still true or not.

After you enter a condition, the control displays its simplified expression.

Condition [& GT 100

]

9.6.2 DEBUGGING WITH THE GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them sampled synchronously
and their curve displayed in a special pop-up window.

9.6.2.1 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

Uyl

nooz

ooz

noo4

n0oos

0006

noo?

noos

noog

LD
ADD
ST

LD
ADD
ST

LD
ADD
5T

0/ i]

==

Let us also assume that you want to know the value of b, d, and k, just before the ST K instruction is executed.

To do so, move the cursor to line 12.

D1WWTEOG6E

o walvoil ::

nnnnnnnnnnn |IMoTion

PHC STUDIO

uuud

0010 D Lk
o011 ADD 1
no1z ST W
nnis

Then click & Debug>Add/Remuyve grafic trigger .

A green arrowhead appears next to the line number, and the graphic trigger window pops up.

UINT Alga hia. I

UINT

UINT
UINT

M vabue Max value Cur vabse

vidiv Redeurser

—— —
= | IHiARS EshCSH

Not all the IL instructions support triggers. For example, it is not possible to place a trigger at the beginning of

a line containing a Jup statement.

9.6.2.2

ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

In order to get the diagram of a variable plotted, you need to add it to the graphic trigger window. To this pur-
pose, select a variable, by double clicking it, and then drag it into the Variables window. The variable now

appears in the Track column.

MAINIL=11

nooz ADD b
0oo3 5T &
noo4

0oos 1D o
0006 ADD d
ooo7? 5T o
o0oog

0009 ID =
o010 ADD 1

Max value

Min value

Cur value

v/ div

Red cursor

E

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically

shown and allows the user to setup sampling and visualization properties.

132 e uwalvoil

D1WWTEOG6E

PHC STUDIO

9.6.2.3 OPENING THE GRAPHIC TRIGGER WINDOW FORM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

ADD

oooz

ADD

ADD

R L ¥ L ¢

Let us also assume that you want to know the values of ¢, d, and k, just before the ST k instruction is executed.
Provided that you can never place a trigger in a block representing a variable such as

(K]

you must select the first available block preceding the selected variable. In the example of the above figure, you
must move the cursor to network 3, and click the ApD block.

Now click #& Debug>Add/Remuve grafic trigger .

This causes the colour of the selected block to turn to green, a white circle with the trigger ID number inside to
appear in the middle of the block, and the related trigger window to pop up.

MAINSZS LE]

(]
D1WWTEO6E o walvoil :::

rrrrrrrrrrr |IMoTion

PHC STUDIO

When preprocessing the FBD source code, compiler translates it into IL instructions. The ADD instruction in
network 3 is expanded to:

LD k

ADD 1

ST k

When you add a trigger to an FBD block, you actually place the trigger before the first statement of its IL equiva-
lent code.

9.6.2.4 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the diagram of a variable, you need to add it to the trigger window. Let us assume that you
want to see the plot of the variable kK of the FBD code in the figure below.

To this purpose, click ‘4 Edit>Watch mode .
The cursor will become as follows.

A

Now you can click the block representing the variable you wish to be shown in the graphic trigger window.
In the example we are considering, click the button block.

K >~

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

r B
Debug windows list g

Symbol to add:
| k

Drebug windows

wéatch
Dzcillogcope

G I'-E||:||'|i|:: trace

[LCancel] [ak.]

LN 4

In order to plot the curve of variable K, select Graphic Trace inthe Debug windows column, then press
OK. The name of the variable is now printed in the Track column.

(]
13« e walvoil D1WWTEO6E

uuuuuuuuuuu [MoTionN

PHC STUDIO

TRIGGERS®3S
S HEHBMEEIE DS & Cl: NS5
B
ADD
iy B
=
[
ADD
+
Um M value Max value Cur value widiv Redeursor £
- ———————

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
: Edit>Insert/Move mode , in order to restore the original cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically
shown and allows the user to setup sampling and visualization properties.

9.6.2.5 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

0001

%

ADD
ENOD

+ 31283

You can place a trigger on a block such as follows.

In this case, the same rules apply as to insert the graphic trigger in an FBD module on a contact

1t

or coil

{F

In this case, follow the instructions. Let us also assume that you want to know the value of some variables every
time the processor reaches network number 1.

(]
D1WWTEO6E o walvoil :::

rrrrrrrrrrr |IMoTion

PHC STUDIO

Click one of the items making up network nr. 1, then click & Debug>Add/Remuve grafic trigger

This causes the grey raised button containing the network number to turn to green, a white circle with a number
inside to appear in the middle of the button, and the graphic trigger window to pop up.

o
: 2. | TRIGGUSS
=
En
£
- -
=
B
)
B
(=Y

Note that unlike the other languages supported by PHC Studio, LD does not allow you to insert a trigger before a

single contact or coil, as it lets you select only an entire network. Thus the variables inthe Graphic trigger
window will be sampled every time the processor reaches the beginning of the selected network.

9.6.2.6 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

In order to watch the diagram of a variable, you need to add it to the Graphic trigger window. Let us as-
sume that you want to see the plot of the variable b in the LD code represented in the figure below.

To this purpose, click % Edit>Watch mode .
The cursor will become as follows.

A

Now you can click the item representing the variable you wish to be shown in the Graphic trigger win-
dow.

A dialog box appears listing all the currently existing instances of debug windows, and asking you which one is
to receive the object you have just clicked.

In order to plot the curve of variable b, select Graphic trace inthe Debug windows column, then press
OK. The name of the variable is now printed in the Track column.

r
s = TR

0

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to observe, you can click
: Edit>Insert/Move mode , so as to restore the original shape of the cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically
shown and allows the user to setup sampling and visualization properties.

(]
13¢ <> walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

9.6.2.7 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

I

noo1

nooz a = b % h;

ooos o = c + SHR({ a. 16#04 }:
oon4

ooos d = = ® =;

0o0a f = f + SHR({ d. 16#04 }:
ooo?

Let us also assume that you want to know the value of e, d, and f, just before the instruction
f := £+ SHR(d, 16#04)
is executed. To do so, move the cursor to line 6.
Then click 42 Debug>Add/Remuve grafic trigger .
A green arrowhead appears next to the line number, and the Graphic trigger window pops up.

6t UDINT Ao Ne

1
1 aoutd = soutd + incr;
5
(]

fbStati{ ensb := inpll. zun := inpll. stop

Unn Min value Max value Curvalue widiv Redcurmer Blue.

Not all the ST instructions support triggers. For example, it is not possible to place a trigger on a line containing
a terminator such as END IF, END FOR, END WHILE, etc.

9.6.2.8 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE
In order to get the diagram of a variable plotted, you need to add it to the Graphic trigger window. To

this purpose, select a variable, by double clicking it, and then drag it into the Variables window, that is the
lower white box in the pop-up window. The variable now appears in the Track column.

(]
D1WWTEO6E o walvoil 3/

rrrrrrrrrrr |IMoTion

PHC STUDIO

MAINSZS =

B ENEEHd X8 A0 & &R

T

"

000 a - 4

he*h
e + SHR (a. 16204):

0005 d:.=a=a
£ £ + SHR (d. 16#04)

Um Minvehe Mavale Curvale v Red cusser il

-

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window is automatically
shown and allows the user to setup sampling and visualization properties.

9.6.2.9 REMOVING A VARIABLE FROM THE GRAPHIC TRIGGER WINDOW

If you want to remove a variable from the Graphic trigger window, select it by clicking its name once, then press
the Del key.

9.6.2.10 USING CONTROLS

This paragraph deals with graphic trigger window controls, which allow you to better supervise the working of
this debugging tool, so as to get more information on the code under scope.

Enabling controls

When you set a trigger, all the elements in the Control bar are enabled. You can start data acquisition by
clicking the Start graphic trace acquisition button.

If you defined a user condition, which is currently false, data acquisition does not start, even though you press
the apposite button.

8

On the contrary, once the condition becomes true, data acquisition starts and continues until the Start
graphic trace acquisition button is released, regardless for the condition being or not still true.

if you release the Start graphic trace acquisition button before all the required samples have
been acquired, the acquisition process stops and all the collected data get lost.

Defining a condition

This control enables users to set a condition on when to start acquisition. By default, this condition is set to true,
and acquisition begins as soon as you press the Enable/Disable acquisition button. From that mo-
ment on, the value of the variables in the Debug window is sampled every time the trigger occurs.

In order to specify a condition, open the Condition tab of the Options dialog box, then press the relevant

button.

A text window pops up, where you can write the IL code that sets the condition.

(]
133 e walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

F ™y
Trigger condition ﬁ
LD a -

GT 100
4 I

Once you have finished writing the condition code, click the 0K button to install it, or press the £SC button to

cancel. The collection of samples will not start until the Start graphic trace acquisition button
is pressed and the user-defined condition is true. A simplified expression of the condition now appears in the
control.

Condition [& GT 100 |:|

]

The text window appears, containing the text you originally wrote, which you can now edit.

To modify it, press again the relevant button.

To completely remove a user-defined condition, press again on the above mentioned button, delete the whole
IL code in the text window, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE or FALSE), other-
wise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code. Namely, all variables local to
the module where the trigger was originally inserted are out of scope, if they have not been dragged into the

Debug window. Also, no new variables can be declared in the condition window.

Setting the scale of axes

- x-axis

When acquisition is completed, PHC Studio plots the curve of the dragged-in variables adjusting the x-axis so
that all the data fit in the Chart window. If you want to apply a different scale, open the General tab of
the Graph properties dialog box, type a number in the horizontal scale edit box, then confirm by clicking
Apply.

- y-axis

You can change the scale of the plot of each variable through the Tracks 17st tab of the Graph prop-

erties dialog box. Otherwise, if you do not need to specify exactly a scale, you can use the Zoom In and
Zoom 0Out controls.

9.6.2.11 CLOSING THE GRAPHIC TRIGGER WINDOW AND REMOVING THE TRIGGER

At the end of a debug session with the graphic trigger window you can choose between the following options:

- Closing the Graphic trigger window.
- Removing the trigger.
- Removing all the triggers.

[]
D1WWTEO6E o walvoil 39

nnnnnnnnnnn |IMoTion

PHC STUDIO

Closing the graphic trigger window

If you have finished plotting the diagram of a set of variables by means of the Graphic trigger window,
you may want to close the Debug window without removing the trigger. If you click the button in the top right-

hand corner, you just hide the Interface window, while the window manager and the relative trigger keep
working.

As a matter of fact, if later you want to restore the Graphic trigger window that you previously hid:

- openthe Trigger 1ist window;

- select the record (having type G);

- click the Open button.

The Interface window appears with the trigger counter properly updated, as if it had never been closed.

Removing the trigger

If you choose this option, you completely remove the code both of the window manager and of its trigger. To
this purpose:

- openthe Trigger 1ist window;
- select the record (having type G);

- click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL), or click the block (if the module is in
FBD) where you placed the trigger. Now press the Graphic trace button in the Debug toolbar.

Removing all the triggers
Alternatively, you can remove all the existing triggers at once, regardless for which records are selected, by
clicking on the Remove all triggers button.

(]
140 > walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

10. PHC STUDIO REFERENCE

10.1 MENUS REFERENCE

In the following tables you can see the list of all PHC Studio’s commands. However, since PHC Studio has a
multi-document interface (MDI), you may find some disabled commands or even some unavailable menus, de-
pending on what kind of document is currently active.

10.1.1 FILE MENU

Command Icon Key Description
New project Creates a new PHC Studio project.
Open project L& Opens an existing PHC Studio project.

Import project

from target Imports sources project from target device.

View project - . - .)
(read only) Opens an existing PHC Studio project in read-only mode.
Save project E Saves the current open project.

Save project As Saves the current open project specifying new name, location and

extension.
Close project Closes the open project.
New text file Opens a blank new generic text file.

Opens an existing file, whatever its extension. The file is displayed
Open file Ctri1+0 in the text editor. Anyway, if you open a project file, you actually
open the PHC Studio project it refers to.

7 Save : : Ctri+S : Saves the document of the currently active window.
7 Close . . .Closes the document of the currently active window.
7 Options . . .Opens the PHC Studio options dialog box.
Print &} Ctrl+P Prints the document of the currently active window.
Print preview . & . .Creates a prev_iew of the document of the currently active window, 7
ready to be printed.
7 Print project . .Prints all the documents making up the project.
: Printer setup : : .Opens the Printer setup dialog box.
7 ..recent.. : : .Lists a set of project file recently opened.

Exit Closes PHC Studio.

[]
D1WWTEO6E o walvoil 4«

nnnnnnnnnnn |IMoTion

PHC STUDIO

10.1.2 EDIT MENU

Command | Icon | Key Description
Undo K Ctrl+Z Cancels last action made in the document.
Redo d Ctrl+Y Restores the last action cancelled by Undo.
Cut ¥ Ctrltx Removes the_ selected items from the active document and
stores them in a system buffer.
Copy Ctri+C Copies the selected items to a system buffer.
Paste =) Ctrity ?:rstes in the active document the contents of the system buf-
Delete Del Deletes the selected item.
Delete line Ctrl+E Deletes the whole source code line.
. . . Ctri+ S . .
Find in project Eﬂt Shift+F Opens the Find in project dialog box.
Bookmarks. ..
Add/ Toggle Ctr1+F2 Adqs a bookmark _to mark lines. If a bookmark is already
defined, removes it.
Next F2 Goes to next defined bookmark
Prev Shift+F2 Goes to previous defined bookmark
Remove all Removes all defined bookmarks
Go to line Ctrl+G Allows you to quickly move to a specific line in the source
code editor.
Asks you to type a string and searches for its first instance
Find i Ctril+F within the active document from the current location of the
cursor.
Find next ﬁ' 3 Itgrates between the results of the research, found by the
Find command.
Replace Ctrl+h AIIovx_/s you to automatlcglly replace one or all the instances of
a string with another string.
Insert/Move mode [Toggle between those two editing modes, used to insert or
move blocks.
Connection mode J° Editing mode which allows you to draw logical wires to con-

nect pins.

Editing mode which allows you to add variables to any debug-

Watch mode Q, ging tool.

(]
142 e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

10.1.3 VIEW MENU

Command Icon Key Description
Toolbar
| Main Toolbar | | 'Shows or hides the Ma in toolbar.
Status bar . . .Shows or hides the Status bar.
Debug bar . . Ctrl+B . Shows or hides the Debug toolbar.
FBD bar . . Ctrl+D | Shows or hides the FBD toolbar.
LD bar | | Ctri+A .Shows or hides the LD toolbar.
SFC bar | | Ctri+q . Shows or hides the SFC toolbar.
Project bar . . Ctri+d . Shows or hides the Project toolbar.
Network | | Ctri+n | Shows or hides the Network toolbar.
Document bar . | Ctr7+M.Shows or hides the Document bar.

Tool windows

Workspace Ctri+y Shows or hides the Workspace window (also called Project

window).
Library Ctrl+L Shows or hides the Libraries window.
Output

Ctrl+R Shows or hides the Output window.
Oscilloscope Ctrl+K Shows or hides the OscilTloscope window.

Watch window Ctrl+T Shows or hides the Watch window.

Bl W& w & A

Force I/0 bar Shows or hides the Force I/0 bar.

PLC run-time
status

¢

Shows or hides the PLC run-time window.

Cross Reference

3 Not implemented yet.
window P y

(m]

Full screen Ctri+l Expands the currently active document window to fill entire screen. (Esc

to exit from this mode).

. Shows or hides a dotted grid in the background of graphical source code
Grid editors.
Show comments for Shows or hides comments for individual objects, not only for networks.
objects (Only for LD editor).

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

10.1.4 PROJECT MENU

Command Icon Key Description

New object

Creates a new program. A dialog is prompted in order to specify

New program the new program properties.

New function Creates a new function block. A dialog is prompted in order to
block specify the new function block properties.

Creates a new function block. A dialog is prompted in order to

New function specify the new function properties.

New variable

Creates a new automatic variable. A dialog is prompted in order to

Automatic specify the new variable properties.
Mapped Creates a new mapped variable. A dialog is prompted in order to
variable specify the new variable properties.
Constant Creates a new constant. A dialog is prompted in order to specify
the new constant properties.
Retain Creates a new retain variable. A dialog is prompted in order to
specify the new variable properties.
Copy object Copies the object currently selected in the Workspace.
Paste object Pastes the previously copied object.

Duplicates the object currently selected in the Workspace, and

Duplicate object asks you to type the name of the copy.

. Delete object . Deletes the currently selected object.
pvfiggeﬁigegbjem Alt+Enter Shows properties and description of the currently selected object.
. Object browser ﬁ . .g)t%zréist.he Object browser, which lets you navigate between
Compile F7 | Launches the PHC Studio compiler.
Recompile all Ac7ttr+7;7 Recompiles the project.
.Generate
redistributable Generates an RSM file.

source module

Import object from

library Lets you import a PHC Studio object from a library.

Export object to Lets you export a PHC Studio object to a library.

library
Library manager AIE] Opens the Library manager.
Refresh all 17- . L .
braries] Reloads all libraries linked to the project.
Macros
New macro Creates a new macro. A dialog is prompted in order to specify the

new macro properties.

(]
1442 e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

Command Icon Key Description
Copy macro Copies the selected macro creating a new one.
Delete macro . . . Deletes the selected macro.
Properties . . .Shows the selected macro properties.
. Select target... . . . Lets you to select a new target for the project.

Refresh current

target Lets you update the target file for the same version of the target.

Options... Opens the project options dialog.

10.1.5 ONLINE MENU

Command Icon Key Description

i?énw communtca s Lets you set the properties of the connection to the target.

Connect = PHC Studio tries to establish a connection to the target.
PHC Studio checks if any changes have been applied since last
Download code |-»I] 5 compilation, if so compiles the project and then downloads the source
code to the target.

Download options Lets you set the properties of the source code downloaded to the

target.
Force image upload If the target device is connected, lets you upload the img file.
Force debug symbols If the target device is connected, lets you upload the debug symbols
upload file.

Halt | Stops the PLC execution.

Cold restart E:Srt:sr;i the PLC execution and both retain and non-retain variables will

Warm restart Restarts the PLC execution and non-retain variables will be reset.

Hot restart Restarts the PLC execution without any reset on variables.

w i Y

Reboot target Reboots the target.

Read all logs again Reloads all remote logs from target.

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

breakpoints
Breakpoint 1ist

Change current in-
stance

@ ® G

10.1.6 DEBUG MENU
Command Icon Key Description

Simulation mode ofik Open/close the integrated simulation environment.
Start/Stop watch 'Shé Starts or stops (toggle) the evaluation of the symbols added in
value the watch window.

Add symbol to watch £8 Adds a symbol to the Watch window.

I.nsert new item (53 Shift+F8 Inserts a new item into the Watch window.

into watch

Add symbo] to a de- F10 Adds a symbol to a debug window.

bug window

I'nsert new 7tem Shift+F10 Inserts a new item into a debug window.

into a debug window

Live debug mode g: :\:gdegug mode is running, starts or stops (toggle) the live debug
Add/ remove text)

trigger L3 F9 Adds/removes a text trigger.

Add/ remove . o

. . + .

graphic trigger E Shift+F9 Adds/removes a graphic trigger.

Remove all Ctri+))

triggers *{ Shift+F9 Removes all the active triggers.

Trigger 1list E Ctri+l Lists all the active triggers.

Run 2 Restarts program after a breakpoint is hit.

Ada/ Remqve F12 Adds or removes a breakpoint.

breakpoint

Remove all

Removes all the active breakpoints.

Lists all the active breakpoints.

Changes the current function block instance (live
debug mode).

146 e uWwalvoil

uuuuuuuuuuu [MoTionN

D1WWTEOG6E

PHC STUDIO

10.1.7 SCHEME FBD MENU

Command Icon Key Description
Network
New
Top E Adds a blank network at the top of the active document.
Bottom = Adds a blank network at the bottom of the active document.
Before =) Adds a blank network before the selected network in the active
= document.
After = Adds a blank network after the selected network in the active document.
Labe] Assigns a label to the selected network, so that it can be indicated as
the target of a jump instruction.
Object
New
. Opens the object browser in order to choose a function to be added to
Function ' the current active document.
Function & Shift+B Opens the object browser in order to choose a function block to be
block added to the current active document.
. . Opens the object browser in order to choose a variable to be added to
Variable g shift+V the current active document.
. . Opens the object browser in order to choose a constant to be added to
Constant shift+k the current active document.
Return LR shift+R Adds a return statement into the selected network.
igg’g ; to pL] shift+J Adds a jump statement into the selected network.
Operator Opens the object browser in order to choose an operator to be added to
P the current active document.
Comment [shift+M Adds a comment into the selected network.
Opens the object browser in order to choose an operator to be added to
Instance name the current active document.
Opens the editor by which the selected object was created, and displays
the relevant source code:
- if the object is a program, or a function, or a function block,
0 ‘ this command opens its source code;
en source
P e - if the object is a variable or a parameter, this command opens
the corresponding variable editor;
- if the object is a standard function or an operator, this
command has no functionality.
. Toggle auto-connection mode, in order to connect automatically two
Auto connect F blocks when they are close enough.
Delete invalid Ctr1+M Removes all invalid connections, represented by a red line in the active

connection scheme.

[]
D1WWTEO6E o walvoil 1+

nnnnnnnnnnn |IMoTion

PHC STUDIO

Command | Icon | Key Description
Increment pins +] Ctri+’+’ ﬁggss additional pins to the selected block in order to increase standard
Decrement pins -1 Ctrl+’-’ Removes pins added by the Increment pins command.

Enable EN/ENO
pins

Object proper-
ties

oo
Hi

Adds the enable in/enable out pins to the selected block. The code

implementing the selected block will be executed only when the enable
in signal is true. The enable out signal simply repeats the value of
enable 1n, allowing you either to enable or to disable a set of blocks

in cascade.

Shows some properties of the selected block.

148 e Wwalvoil

uuuuuuuuuuu [MoTionN

D1WWTEOG6E

PHC STUDIO

10.1.8 SCHEME LD MENU

Command Icon Key Description
Network
New
Top E Adds a blank network at the top of the active document.
Bottom E Adds a blank network at the bottom of the active document.
Before = Adds a blank network before the selected network in the
— active document.
After = Adds a blank network after the selected network in the active
= document.
Labe] Assigns a label to the selected network in order to be used as
target of a jump instruction.
Object
New
Parallel contact . Adds a contact parallel before the selected one into the
before T[HI Shift+p selected network.
Parallel contact M,J Adds a contact parallel after the selected one into the selected
after network.
Serie contact +1—|_ Adds a contact in series before the selected one into the
before selected network.

Adds a contact in series after the selected one into the

Serie contact after 1} Shift+C selected network.

Coil {} Shift+0 Adds a Coil into the selected network.
. Opens the object browser in order to choose which block
Block : Shift+g should be added to the current active document.
. Opens the object browser in order to choose a constant to be
Constant & Shift+k added to the current active document.
Return LF 2 Shift+R Adds a Return statement into the selected network.
Jump » Shift+J Adds ajump statement into the selected network.
. . Opens the object browser in order to choose a variable to be
Variable g Shift+v added to the current active document.
Expression =& Shift+E Adds an expression into the selected network.
New branch T Creates new branch after the current position.
Comment [Shift+M Adds a comment into the selected network.

Instance name It_)zlegzkyou assign a name to an instance of the selected function

[]
D1WWTEO6E o walvoil 1+

nnnnnnnnnnn |IMoTion

PHC STUDIO

Set output Tine

Object properties

Command | Icon | Key Description
Opens the editor by which the selected object was created,
and displays the relevant source code:
- if the object is a program, or a function, or a function
0 ‘ block, this command opens its source code;
en source
P v - if the object is a variable or a parameter, this
command opens the corresponding variable editor;
- if the object is a standard function or an operator,
this command has no functionality.

Open object |:| 0 Changes the selected object into an open contact object.

Negated object |E| C Changes the selected object into a negated contact object.

Positive object |E| P Changes the selected object into a positive contact object.

Negative object |E| N Changes the selected object into a negative contact object.

Set coil S Changes the selected coil into a set coil.

Reset coil [R] R Changes the selected coil into a reset coil.

. ., » Adds additional pins to the selected block in order to increase
+

Increment pins 1 ctri++ ctandard ones.

Decrement pins =4 Ctri+ -’ Removes pins added by the Increment pins command.
Adds the enable in/enable out pins to the selected block.
The code implementing the selected block will be executed

Enable EN/ENO pins Ei E only when the enable 1nsignal is true. The enable out

signal simply repeats the value of enable 17n, allowing you

either to enable or to disable a set of blocks in cascade.

Set selected pin as the output line of the block.

Shows some properties of the selected block.

150 e uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

Description

Adds new step into the selected network.

Adds new transition into the selected network.

10.1.9 SCHEME SFC MENU
Command Icon Key
Object
New
Step .
Transition o
Jump L
Ly

Modify
Add pin to divergent
transition
Remove pin from divergent

transition
Add pin to convergent

transition
Remove pin from convergent
transition
Add pin to simultaneous
divergent transition
Remove pin from
simultaneous divergent
transition
Add pin to simultaneous
convergent transition
Remove pin from
simultaneous convergent

transition
Add space before righ

pin
Remove space before
rightmost pin

Code Object
New Action

New Transition code

Auto connect

Delete invalid c

oy

Adds new jump into the selected network.

Adds a divergent pin to the selected transition.
Removes a divergent pin to the selected transition.
Adds a convergent pin to the selected transition.

Removes a convergent pin to the selected transition.

Adds a simultaneous divergent pin to the selected

15

transition.
Removes a simultaneous divergent pin to the selected

i

transition.
Adds a simultaneous convergent pin to the selected

transition.
Removes a simultaneous convergent pin to the

T

selected transition.
Adds a space before the rightmost pin.

i

tmost
Removes a space before the rightmost pin.
Adds an action in the active document.

Adds a transition in the active document.

Toggle auto-connection mode, in order to connect
automatically two blocks when they are close enough.

E

Ea
Removes all invalid connections, represented by a red

line in the active scheme.

Ctri+M

zzzzzzzzz marion

onnection

D1WWTEOG6E

PHC STUDIO

10.1.10 VARIABLES MENU

Command Icon Key Description
Add
Automatic Crea_tes a new automatlc variable. A dialog is prompted in order to
specify the new variable.
. Ctri+ Creates a new mapped variable. A dialog is prompted in order to
Mapped variable Shift+M specify the new variable.
Constant Creates a new constant. A dialog is prompted in order to specify the
new constant.
R . Creates a new retain variable. A dialog is prompted in order to
etain . h
specify the new variable.
Ctri+ L))
Insert G Shift+ins Adds a new row to the grid in the currently active editor.
Delete [d Del Deletes the variable in the selected row of the currently active table.
Create multiple Lets you to create a set of multiple variables.
G Opens a dialog box which lets you create and delete groups of
roup -
variables.
10.1.11 WINDOW MENU
Command | Icon | Key Description
c Displaces all open documents in cascade, so that they completely
ascade .
overlap except for the caption.
The PLC editors area is split into frames having the same dimensions,
Tile depending on the number of currently open documents. Each frame is
automatically assigned to one of such documents.
Displaces the icons of the minimized documents in the bottom left-
Arrange Icons hand corner of the PLC editors area.
Close all Closes all open documents.
10.1.12 HELP MENU
Command Icon Key Description
Index Lists all the Help keywords and opens the related topic.
Context Fi C(_Jntext-sensmve help. Opens the topic related to the currently active
window.
About. ..

Credits and version information.

152 e uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

10.2 TOOLBARS REFERENCE

In the following tables you can see the list of all PHC Studio’s toolbars. The buttons making up each toolbar are
always the same, whatever the currently active document. However, some of them may produce no effect, if
there is no logical relation to the active document.

10.2.1 MAIN TOOLBAR

ERIETI= Ce el ASe =l PP =

10.2.2 FBD TOOLBAR

10.2.3 LD TOOLBAR

ripeig | S TR O IFALICHIIIE S

10.2.4 SFC TOOLBAR

Ry e U RIS

10.2.5 PROJECT TOOLBAR

10.2.6 NETWORK TOOLBAR

’EEEIF'F:':sss

O = e | e |

10.2.7 DEBUG TOOLBAR

= > R IPEMNS

[]
D1WWTEO6E o walvoil :s:

rrrrrrrrrrr |IMoTion

PHC STUDIO

(]
152 e uwalvoil D1WWTEO6E

uuuuuuuuu [MoTionN

PHC STUDIO

11. LANGUAGE REFERENCE

All PHC Studio languages are IEC 61131-3 standard-compliant.
- Common elements

- Instruction list (IL)

- Function block diagram (FBD)

- Ladder diagram (LD)

- Structured text (ST)

- Sequential Function Chart (SFC).

Moreover, PHC Studio implements some extensions:

- Pointers

- Macros.

11.1 COMMON ELEMENTS

By common elements textual and graphic elements are means which are common to all the programmable con-
troller programming languages specified by IEC 61131-3 standard.

Note: the definition and editing of most of the common elements (variables, structured ele-
ments, function blocks definitions etc.) are managed by PHC Studio through specific edi-
tors, forms and tables.

PHC Studio does not allow to edit directly the source code related to the above mentioned
common elements.

The following paragraphs are meant to be a language specification. To correctly manage
common elements refer to the PHC Studio user guide.

11.1.1 BASIC ELEMENTS
11.1.1.1 CHARACTER SET

Textual documents and textual elements of graphic languages are written by using the standard ASCII character
set.

11.1.1.2 COMMENTS

User comments are delimited at the beginning and end by the special character combinations “ (*” and “*)”~,
respectively. Comments are permitted anywhere in the program, and they have no syntactic or semantic signifi-
cance in any of the languages defined in this standard.

The use of nested comments, e.g., (* (* NESTED *) *), is treated as an error.

11.1.2 ELEMENTARY DATA TYPES
A number of elementary (i.e. pre-defined) data types is made available by PHC Studio, all compliant with IEC
61131-3 standard.

Elementary data types, keyword for each data type, number of bits per data element, and range of values for
each elementary data type are described in the following table.

Keyword Data type Bits Range
BOOL Boolean See note Oto1l
SINT Short integer 8 -128 to 127
USINT Unsigned short integer 8 0 to 255

INT Integer 16 -32768 to 32767

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

Keyword Data type Bits Range
UINT Unsigned integer 16 0 to 65536
DINT Double integer 32 -231 to 23t-1
UDINT Unsigned long integer 32 0 to 2%
BYTE Bit string of length 8 8 -
WORD Bit string of length 16 16 —
DWORD Bit string of length 32 32 —
REAL Real number 32 -3.40E+38 to +3.40E+38
STRING String of characters - -

Note: the actual implementation of the BOOL data type depends on the processor of the target
device, e.qg. it is 1 bit long for devices that have a bit-addressable area.

11.1.3 DERIVED DATA TYPES

Derived data types can be declared using the TYPE. . .END TYPE construct. They can be used in variable declara-
tions, in addition to the elementary data types.

Both single-element variables and elements of a multi-element variable, which are declared to be of derived
data types, can be used anywhere where a variable of its parent type can be used.

11.1.3.1 TYPEDEFS

The purpose of typedefs is to assign alternative names to existing types. There are not any differences between
a typedef and its parent type, except the name.

Typedefs can be declared using the following syntax:

TYPE

<enumerated data type name> : <parent type name>;

END TYPE
For example, consider the following declaration, mapping the name L.oNGWORD to the IEC 61131-3 standard type
DWORD:

TYPE

longword : DWORD;
END TYPE

11.1.3.2 ENUMERATED DATA TYPES

An enumerated data type declaration specifies that the value of any data element of that type can only be one of
the values given in the associated list of identifiers. The enumeration list defines an ordered set of enumerated
values, starting with the first identifier of the list, and ending with the last.

Enumerated data types can be declared using the following syntax:
TYPE
<enumerated data type name> : (<enumeration list>);

END TYPE

For example, consider the following declaration of two enumerated data types. Note that, when no explicit value
is given to an identifier in the enumeration list, its value equals the value assigned to the previous identifier
augmented by one.

(]
15s @ uwalvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

TYPE
enuml: (
vall, (* the value of vall is 0 *)
val2, (* the value of val2 is 1 *)

val3 (* the value of wval3 is 2 *)

enum?2: (

3, (* the value of j is (i + 1) =1 *)

) ;
END TYPE

Different enumerated data types may use the same identifiers for enumerated values. In order to be uniquely
identified when used in a particular context, enumerated literals may be qualified by a prefix consisting of their
associated data type name and the # sign.

11.1.3.3 SUBRANGES

A subrange declaration specifies that the value of any data element of that type is restricted between and includ-
ing the specified upper and lower limits.

Subranges can be declared using the following syntax:

TYPE

<subrange name> : <parent type name> (<lower limit>..<upper limit>
) ;

END TYPE
For a concrete example consider the following declaration:
TYPE
int 0 to 100 : INT (0..100);
END TYPE

11.1.3.4 STRUCTURES

A sTRUCT declaration specifies that data elements of that type shall contain sub-elements of specified types
which can be accessed by the specified names.

Structures can be declared using the following syntax:
TYPE
<structured type name> : STRUCT
<declaration of structurestructure elements>
END_ STRUCT;

END TYPE
For example, consider the following declaration:

TYPE

structurel : STRUCT
eleml : USINT;
elem2 : USINT;
elem3 : INT;

[]
D1WWTEO6E o walvoil i

nnnnnnnnnnn |IMoTion

PHC STUDIO

elem3 : REAL;

END STRUCT;
END TYPE

11.1.4 LITERALS

11.1.4.1 NUMERIC LITERALS

External representation of data in the various programmable controller programming languages consists of
numeric literals.

There are two classes of numeric literals: integer literals and real literals. A numeric literal is defined as a deci-
mal number or a based number.

Decimal literals are represented in conventional decimal notation. Real literals are distinguished by the presence
of a decimal point. An exponent indicates the integer power of ten by which the preceding number needs to be
multiplied to obtain the represented value. Decimal literals and their exponents can contain a preceding sign
(+ or-).

Integer literals can also be represented in base 2, 8 or 16. The base is in decimal notation. For base 16, an
extended set of digits consisting of letters A through F is used, with the conventional significance of decimal 10
through 15, respectively. Based numbers do not contain any leading sign (+ or -).

Boolean data are represented by the keywords FALSE or TRUE.
Numerical literal features and examples are shown in the table below.

Feature description Examples
Integer literals -12 0 123 +986
Real literals -12.0 0.0 0.4560
-1.34E-12 or -1.34e-12
Real literals with exponents 1.0E+6 or 1.0e+6

1.234E6 or 1.234e6
2#11111111 (256 decimal)

Base 2 literals 2#11100000 (240 decimal)
. 8#377 (256 decimal)
Base 8 literals 8#340 (240 decimal)
Base 16 literals 16#FF or 16#ff (256 decimal)
16#EOQ or 16#e0 (240 decimal)
Boolean FALSE and TRUE FALSE TRUE

11.1.4.2 CHARACTER STRING LITERALS

A character string literal is a sequence of zero or more characters prefixed and terminated by the single quote
character (').

The three-character combination of the dollar sign ($) followed by two hexadecimal digits shall be interpreted
as the hexadecimal representation of the eight-bit character code.

Example Explanation

v Empty string (length zero)

Al String of length one containing the single character A

! String of length one containing the Space character

A String of length one containing the S7ngle quote character
vt String of length one containing the double quote character
'SRSL! String of length two containing CR and LF characters
'SOA" String of length one containing the LF character

(]
153 @ uwalvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

Two-character combinations beginning with the dollar sign shall be interpreted as shown in the following table
when they occur in character strings.

Combination Interpretation when printed

$$ Dollar sign
$! Single quote

$L or $1 Line feed

$N or $n Newline

$P or $p Form feed (page)

SR Or Sr Carriage return

ST or St Tab

11.1.5 VARIABLES
11.1.5.1 FOREWORD

Variables provide a means of identifying data objects whose contents may change, e.g., data associated with
the inputs, outputs, or memory of the programmable controller. A variable must be declared to be one of the
elementary types. Variables can be represented symbolically, or alternatively in a manner which directly rep-
resents the association of the data element with physical or logical locations in the programmable controller’s
input, output, or memory structure.

Each program organization unit (POU) (i.e., each program, function, or function block) contains at its beginning
at least one declaration part, consisting of one or more structuring elements, which specify the types (and, if
necessary, the physical or logical location) of the variables used in the organization unit. This declaration part
has the textual form of one of the keywords vAR, VAR INPUT, or VAR OUTPUT as defined in the keywords sec-
tion, followed in the case of VAR by zero or one occurrence of the qualifiers RETAIN, NON RETAIN or the qualifier
CONSTANT, and in the case of VAR INPUT or VAR OUTPUT by zero or one occurrence of the qualifier RETAIN or
NON_ RETAIN, followed by one or more declarations separated by semicolons and terminated by the keyword
END VAR. A declaration may also specify an initialization for the declared variable, when a programmable con-
troller supports the declaration by the user of initial values for variables.

11.1.5.2 STRUCTURING ELEMENT

The declaration of a variable must be performed within the following program structuring element:
KEYWORD [RETAIN] [CONSTANT]
Declaration 1

Declaration 2

Declaration N

END VAR

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

11.1.5.3 KEYWORDS AND SCOPE

Keyword Variable usage
VAR Internal to organization unit.
VAR_INPUT Externally supplied.
VAR _OUTPUT Supplied by organization unit to external entities.

Supplied by external entities, can be modified within

VAR IN OUT s)
- - organization unit.

Supplied by configuration via VAR GLOBAL, can be

VAR EXTERNAL - e S .
- modified within organization unit.

VAR GLOBAL Global variable declaration.

The scope (range of validity) of the declarations contained in structuring elements is local to the program or-
ganization unit (POU) in which the declaration part is contained. That is, the declared variables are accessible to
other program organization units except by explicit argument passing via variables which have been declared as
inputs or outputs of those units. The one exception to this rule is the case of variables which have been declared
to be global.

Such variables are accessible to programs in any case, or via a VAR _EXTERNAL declaration to function blocks.
The type of a variable declared in a VAR _EXTERNAL must agree with the type declared in the vaArR GLOBAL block.

To give access to this variables to all type of POU, without using any keyword, you must enable this option in the
code generation tab of the project options (see Paragraph 4.6.2).

There is an error if:

- any program organization unit attempts to modify the value of a variable that has been declared with the
CONSTANT qualifier;

- a variable declared as VAR GLOBAL CONSTANT in a configuration element or program organization unit (the
“containing element”) is used in a VAR_EXTERNAL declaration (without the consSTANT qualifier) of any element
contained within the containing element.

11.1.5.4 QUALIFIERS

Qualifier Description

The attribute consT indicates that the variables within the
CONST structuring elements are constants, i.e. they have a constant value,
which cannot be modified once the PLC project has been compiled.

The attribute RETAIN indicates that the variables within the
RETAIN structuring elements are retentive, i.e. they keep their value even
after the target device is reset or switched off.

11.1.5.5 SINGLE-ELEMENT VARIABLES AND ARRAYS

A single-element variable represents a single data element of either one of the elementary types or one of the
derived data types.

An array is a collection of data elements of the same data type; in order to access a single element of the array,
a subscript (or index) enclosed in square brackets has to be used. Subscripts can be either integer literals or
single-element variables.

To easily represent data matrices, arrays can be multi-dimensional; in this case, a composite subscript is re-
quired, one index per dimension, separated by commas. The maximum number of dimensions allowed in the
definition of an array is three.

(]
160 @ uwalvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

11.1.5.6 DECLARATION SYNTAX

Variables must be declared within structuring elements, using the following syntax:

VarNamel : Typenamel [:= Initialvall];
VarName?2 AT Location2 : Typename2 [:= Initialval2 1];
VarName3 : ARRAY [0..N] OF Typename3;
where:
Keyword Description

Variable identifier, consisting of a string of alphanumeric
VarNameX characters, of length 1 or more. It is used for symbolic
representation of variables.

TypenameX Data type of the variable, selected from elementary data types.
InitialvalXx The value the variable assumes after reset of the target.
LocationX See the next paragraph.
N Index of the last element, the array having length

N + 1.

11.1.5.7 LOCATION

Variables can be represented symbolically, i.e. accessed through their identifier, or alternatively in a manner
which directly represents the association of the data element with physical or logical locations in the program-
mable controller’s input, output, or memory structure.

Direct representation of a single-element variable is provided by a special symbol formed by the concatenation
of the percent sign “3” , a location prefix and a size prefix, and one or two unsigned integers, separated by
periods (.).

%$location.size.index.index
1) location

The location prefix may be one of the following:

Location prefix Description
I Input location
Q Output location
M Memory location

2) size
The size prefix may be one of the following:

Size prefix Description
X Single bit size
B Byte (8 bits) size
W Word (16 bits) size
D Double word (32 bits) size

3) index.index

This sequence of unsigned integers, separated by dots, specifies the actual position of the variable in the
area specified by the location prefix.

[]
D1WWTEO6E o walvoil -

nnnnnnnnnnn |IMoTion

PHC STUDIO

Example:
Direct representation Description
oMWA. 6 Word starting from the first byte of the 7™ element
o of memory datablock 4.
2 7%0.4 First bit of the first byte of the 5% element of input

set 0.

Note that the absolute position depends on the size of the datablock elements, not on the size prefix. As a mat-
ter of fact, sMw4.6 and 3sMD4.6 begin from the same byte in memory, but the former points to an area which is
16 bits shorter than the latter.

For advanced users only: if the index consists of one integer only (no dots), then it loses any reference to data
blocks, and it points directly to the byte in memory having the index value as its absolute address.

Direct representation Description
. Word starting from the first byte of the 7t element
SMW4 . 6 .
of datablock 4 in memory.
SMW4 Word starting from byte 4 of memory.
Example
VAR [RETAIN] [CONSTANT]
XQuote : DINT; Enabling : BOOL := FALSE;
TorqueCurrent AT $MW4.32 : INT;
Counters : ARRAY [O .. 9] OF UINT;
Limits: ARRAY [0..3, 0..9]
END VAR

- Variable xQuote is 32 bits long, and it is automatically allocated by the PHC Studio compiler.
- Variable Enabling is initialized to FALSE after target reset.

- Variable TorqueCurrent is allocated in the memory area of the target device, and it takes 16 bits starting
from the first byte of the 33 element of datablock 4.

- Variable counters is an array of 10 independent variables of type unsigned integer.

11.1.5.8 DECLARING VARIABLES IN PHC STUDIO

Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
the Local variables editor, the Global variables editor, and the Parameters editor, which provide a friendly inter-
face to declare all kinds of variables.

PROGRAM ORGANIZATION UNITS

Program organization units are functions, function blocks, and programs. Program Organization Units can be de-
livered by the manufacturer, or programmed by the user through the means defined in this part of the standard

Program organization units are not recursive; that is, the invocation of a program organization unit cannot cause
the invocation of another program organization unit of the same type.

11.1.6.1 FUNCTIONS

Introduction

For the purposes of programmable controller programming languages, a function is defined as a program or-
ganization unit (POU) which, when executed, yields exactly one data element, which is considered to be the
function result.

Functions contain no internal state information, i.e., invocation of a function with the same arguments (input
variables VAR INPUT and in-out variables VAR IN oUT) always yields the same values (output variables VAR
OUTPUT, in-out variables vAR_IN ouT and function result).

162 e uwalvoil

nnnnnnnnnnn IMoTion

D1WWTEOG6E

PHC STUDIO

Declaration syntax
The declaration of a function must be performed as follows:

FUNCTION FunctionName : RetDataType
VAR _INPUT

declaration of input variables (see the relevant section)
END VAR
VAR

declaration of local variables (see the relevant section)
END VAR

Function body

END_ FUNCTION

Keyword Description
FunctionName Name of the function being declared.
RetDataType Data type of the value to be returned by the function.

Specifies the operations to be performed upon the input variables in
order to assign values dependent on the function’s semantics to a
Function body variable with the same name as the function, which represents the
function result. It can be written in any of the languages supported
by PHC Studio.

Declaring functions in PHC Studio

Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
a friendly interface for using functions.

11.1.6.2 FUNCTION BLOCKS

Introduction

For the purposes of programmable controller programming languages, a function block is a program organiza-
tion unit which, when executed, yields one or more values. Multiple, named instances (copies) of a function
block can be created. Each instance has an associated identifier (the instance name), and a data structure con-
taining its input, output and internal variables. All the values of the output variables and the necessary internal
variables of this data structure persist from one execution of the function block to the next; therefore, invocation
of a function block with the same arguments (input variables) does not always yield the same output values.

Only the input and output variables are accessible outside of an instance of a function block, i.e., the function
block’s internal variables are hidden from the user of the function block.

In order to execute its operations, a function block needs to be invoked by another POU. Invocation depends on
the specific language of the module calling the function block.

The scope of an instance of a function block is local to the program organization unit in which it is instantiated.
Declaration syntax
The declaration of a function must be performed as follows:
FUNCTION BLOCK FunctionBlockName
VAR INPUT
declaration of input variables (see the relevant section)
END VAR
VAR OUTPUT
declaration of output variables

END VAR

o walvoil s

DIWWTEOGE e e, maTion

PHC STUDIO

VAR EXTERNAL

declaration of external variables
END VAR
VAR

declaration of local variables
END VAR

Function block body
END FUNCTION BLOCK

Keyword Description

Name of the function block being declared (note: name of the

FunctionBlockName .
template, not of its instances).

A function block can access global variables only if they are listed
VAR _EXTERNAL .. END VAR in @ VAR_EXTERNAL structuring element. Variables passed to the FB
via a VAR _EXTERNAL construct can be modified from within the FB.

Specifies the operations to be performed upon the input variables
in order to assign values to the output variables - dependent on
Function block body the function block’s semantics and on the value of the internal
variables. It can be written in any of the languages supported by
PHC Studio.

Declaring functions in PHC Studio

Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
a friendly interface for using function blocks.

(]
16« @ walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

11.1.6.3 PROGRAMS

Introduction

A program is defined in IEC 61131-1 as a “logical assembly of all the programming language elements and
constructs necessary for the intended signal processing required for the control of a machine or process by a
programmable controller system”.

Declaration syntax
The declaration of a program must be performed as follows:
PROGRAM < program name>
Declaration of variables (see the relevant section)
Program body
END PROGRAM

Keyword Description
Program Name Name of the program being declared.
Specifies the operations to be performed to get the intended signal
Program body processing. It can be written in any of the languages supported by
PHC Studio.

Writing programs in PHC Studio

Whatever the PLC language you are using, PHC Studio allows you to disregard the syntax above, as it supplies
a friendly interface for writing programs.

11.1.7 IEC 61131-3 STANDARD FUNCTIONS

This paragraph is a reference of all IEC 61131-3 standard functions available in PHC Studio, along with a few
others, which may be considered as PHC Studio’s extensions to the standard.

These functions are common to the whole set of programming languages and can therefore be used in any Pro-
grammable Organization Unit (POU).

A function specified in this paragraph to be extensible (Ext.) is allowed to have a variable number of inputs.

Type conversion functions

According to the IEC 61131-3 standard, type conversion functions shall have the form * ToO **, where “+” is
the type of the input variable, and “+*" the type of the output variable (for example, INT TO REAL). PHC Studio
provides a more convenient set of overloaded type conversion functions, relieving the developer to specify the
input variable type.

TO_BOOL
Description Conversion to BOOL (boolean)
Number of operands |1
Input data type Any numerical type
Output data type BOOL
out := TO BOOL(0); (* out = FALSE ¥*)
Examples out := TO BOOL(1); (* out = TRUE *)
out := TO BOOL(1000); (* out = TRUE *)

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

TO_SINT

Description

Conversion to SINT (8-bit signed integer)

Number of operands

1

Input data type

Any numerical type or STRING

Output data type SINT
out := TO SINT(-1); (* out = -1 *)
Examples
out := TO_SINT(16#100); (* out = 0 *)
TO_USINT
Description Conversion to USINT (8-bit unsigned integer)

Number of operands

1

Input data type

Any numerical type or STRING

Output data type USINT
out := TO USINT(-1); (* out = 255 *)
Examples
out := TO USINT(16#100); (* out = 0 *)
TO_INT
Description Conversion to INT (16-bit signed integer)

Number of operands

1

Input data type

Any numerical type or STRING

Output data type INT
out := TO INT(-1000.0); (* out = -1000 *)
Examples
out := TO INT(16#8000); (* out = -32768 ¥*)
TO_UINT
Description Conversion to UINT (16-bit unsigned integer)

Number of operands

1

Input data type

Any numerical type or STRING

Output data type UINT
out := TO UINT(1000.0); (* out = 1000 *)
Examples
out := TO UINT(16#8000); (* out = 32768 ¥*)
TO_DINT
Description Conversion to DINT (32-bit signed integer)

Number of operands

1

Input data type

Any numerical type or STRING

Output data type DINT

out := TO DINT(10.0); (* out = 10 *)
Examples

out := TO_DINT(16#FFFFFFFF); (* out = -1 *)

166 e UuWalvoil

nnnnnnnnnnn IMoTion

D1WWTEOG6E

PHC STUDIO

TO_UDINT
Description Conversion to UDINT (32-bit unsigned integer)
Number of operands |1
Input data type Any numerical type or STRING
Output data type UDINT
out := TO UDINT(10.0); (* out = 10 *)
Examples
out := TO_UDINT(16#FFFFFFFF); (* out = 4294967295 *)
TO_BYTE
Description Conversion to BYTE (8-bit string)
Number of operands |1
Input data type Any numerical type or STRING
Output data type BYTE
out := TO BYTE(-1); (* out = 16#FF ¥*)
Examples
out := TO BYTE(16#100); (* out = 16#00 *)
TO_WORD
Description Conversion to WORD (16-bit string)
Number of operands |1
Input data type Any numerical type or STRING
Output data type WORD
out := TO WORD(1000.0); (* out = 16#03E8 *)
Examples
out := TO WORD(-32768); (* out = 16#8000 *)
TO_DWORD
Description Conversion to DWORD (32-bit string)
Number of operands |1
Input data type Any numerical type or STRING
Output data type DWORD
out := TO DWORD(10.0); (* out = 16#0000000A *)
Examples
out := TO DWORD(-1); (* out = l6#FFFFFFFF *)
TO_REAL
Description Conversion to REAL (32-bit floating point)
Number of operands |1
Input data type Any numerical type or STRING
Output data type REAL
out := TO REAL(-1000); (* out = -1000.0 *)
Examples
out := TO REAL(16#8000); (* out = -32768.0 *)

[]
D1WWTEO6E o walvoil s

zzzzzzzzzzz |IMoTion

PHC STUDIO

TO_LREAL

Description Conversion to LREAL (64-bit floating point)
Number of operands |1
Input data type Any numerical type or STRING
Output data type LREAL

out := TO LREAL(-1000); (* out = -1000.0 *)
Examples

out := TO LREAL(16#8000); (* out = —-32768.0 *)

Numerical functions
The availability of the following functions depends on the target device. Please refer to your hardware supplier

for details.
ABS

Description Absolute value. Computes the absolute value of input #0
Number of operands |1
Input data type Any numerical type
Output data type Same as input

OUT := ABS(-5); (* OUT = 5 *)
Examples OUT := ABS(-1.618); (* OUT = 1.618 *)

OUT := ABS(3.141592); (* OUT = 3.141592 *)

SQRT
Description Square root. Computes the square root of input #0
Number of operands |1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := SQRT(4.0); (* OUT = 2.0 *)

LN

Description Natural logarithm. Computes the logarithm with base e of input #0
Number of operands |1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := LN(2.718281); (* OUT = 1.0 *)

LOG
Description Common logarithm. Computes the logarithm with base 10 of input #0
Number of operands |1
Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
Examples OUT := LOG(100.0); (* OUT = 2.0 *)

(]
168 @ walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

EXP

Description

Natural exponential. Computes the exponential function of input #0

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

Examples OUT := EXP(1.0); (* OUT ~ 2.718281 *)
SIN
Description Sine. Computes the sine function of input #0 expressed in radians

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

OUT := SIN(0.0); (* OUT = 0.0 *)
Examples
OUT := SIN(2.5 * 3.141592); (* OUT ~ 1.0 ¥*)
cos
Description Cosine. Computes the cosine function of input #0 expressed in radians

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

OUT := COS(0.0); (* OUT = 1.0 %)
Examples
OUT := COS(-3.141592); (* OUT ~ -1.0 *)
TAN
Description Tangent. Computes the tangent function of input #0 expressed in radians

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

OUT := TAN(0.0); (* OUT = 0.0 *)
Examples
OUT := TAN(3.141592 / 4.0); (* OUT ~ 1.0 *)
ASIN
Description grgislnnse. Computes the principal arc sine of input #0; result is expressed in

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

Examples

OUT := ASIN(0.0); (* OUT = 0.0 *)

OUT := ASIN(1.0); (* OUT = PI / 2 *)

o walvoil

zzzzzzzzzzz |IMoTion

PHC STUDIO

PHC STUDIO

ACOS

Arc cosine. Computes the principal arc cosine of input #0; result is
expressed in radians

Description

Number of operands |1

Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise
OUT := ACOS(1.0); (* OUT = 0.0 *)
Examples
OUT := ACOS(-1.0); (* OUT = PI *)
ATAN

Arc tangent. Computes the principal arc tangent of input #0; result is
expressed in radians

Number of operands |1

Description

Input data type LREAL where available, REAL otherwise
Output data type LREAL where available, REAL otherwise

OUT := ATAN(0.0); (* OUT = 0.0 *)
Examples

OUT := ATAN(1.0); (* OUT = PI / 4 %)

ADD
Description Arithmetic addition. Computes the sum of the two inputs.
Number of operands |2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := ADD(20, 40); (* OUT = 60 *)
MUL
Description Arithmetic multiplication. Multiplies the two inputs.
Number of operands | 2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := MUL(10, 10); (* OUT = 100 *)
SsuB
Description Arithmetic subtraction. Subtracts input #1 from input #0
Number of operands |2
Input data type Any numerical type, Any numerical type
Output data type Same as Inputs
Examples OUT := SUB(10, 3); (* OUT = 7 *)

(]
170 <> uwalvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

DIV

Description

Arithmetic division. Divides input #0 by input #1

Number of operands

2

Input data type

Any numerical type, Any numerical type

Output data type

Same as Inputs

Examples OUT := DIV(20, 2); (* OUT = 10 *)
MOD

Description Module. Computes input #0 module input #1

Number of operands |2

Input data type

Any numerical type, Any numerical type

Output data type

Same as Inputs

Examples OUT := MOD(10, 3); (* OUT = 1 *)

POW
Description Exponentiation. Raises Base to the power Expo
Number of operands |2

Input data type

LREAL where available, REAL otherwise;
LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

OUT := POW(2.0, 3.0); (* OUT = 8.0 ¥*)
Examples
OUT := POW(-1.0, 5.0); (* OUT = -1.0 *)
ATAN2*
Description Arc tangent (with 2 parameters). Computes the principal arc tangent of

Y/X; result is expressed in radians

Number of operands

2

Input data type

LREAL where available, REAL otherwise;
LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

OUT := ATAN2(0.0, 1.0); (* OUT = 0.0 *)
OUT := ATAN2(1.0, 1.0); (* OUT = PI / 4 *)
Examples
OUT := ATAN2(-1.0, -1.0); (* OUT = (-3/4) * PI %)
OUT := ATAN2(1.0, 0.0); (* OUT = PI / 2 *)
SINH*
Description Hyperbolic sine. Computes the hyperbolic sine function of input #0

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

Examples

OUT := SINH(0.0); (* OUT = 0.0 ¥*)

D1WWTEOG6E

o walvoil 17:

zzzzzzzzzzz |IMoTion

PHC STUDIO

PHC STUDIO

COSH*

Description

Hyperbolic cosine. Computes the hyperbolic cosine function of input #0

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

Examples OUT := COSH(0.0); (* OUT = 1.0 *)
TANH*
Description Hyperbolic tangent. Computes the hyperbolic tangent function of input #0

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

Examples OUT := TANH(0.0); (* OUT = 0.0 *)
CEIL*
Description Rounding up to integer. Returns the smallest integer that is greater than or

equal to input #0

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

OUT := CEIL(1.95); (* OUT = 2.0 *)
Examples
OUT := CEIL(-1.27); (* OUT = -1.0 *)
FLOOR*
Description Rounding down to integer. Returns the largest integer that is less than or

equal to input #0

Number of operands

1

Input data type

LREAL where available, REAL otherwise

Output data type

LREAL where available, REAL otherwise

E I OUT := FLOOR(1.95); (* OUT = 1.0 *)
xamples OUT := FLOOR(-1.27); (* OUT = -2.0 *)
*: function provided as extension to the IEC 61131-3 standard.
Bit string functions
SHL
Description Input#0 left-shifted of Input #1 bits, zero filled on the right.

Number of operands

2

Input data type

Any numerical type, Any numerical type

Output data type

Same as Input #0

Examples

OUT := SHL(IN := 16#1000CAFE,

16#CAFE0000 *)

16);
(* OUT =

172 e uwalvoil

nnnnnnnnnnn IMoTion

D1WWTEOG6E

PHC STUDIO

SHR
Description Input #0 right-shifted of Input #1 bits, zero filled on the left.
Number of operands |2
Input data type Any numerical type, Any numerical type
Output data type Same as Input #0
E I OUT := SHR(IN := 16#1000CAFE, 24);
xamples (* OUT = 16#00000010 *)

ROL

Description Input #0 left-shifted of Input #1 bits, circular.
Number of operands |2
Input data type Any numerical type, Any numerical type
Output data type Same as Input #0

OUT := ROL(IN := 16#1000CAFE, 4);
Examples

(* OUT = 16#000CAFEL *)

ROR

Description Input #0 right-shifted of Input #1 bits, circular.
Number of operands |2
Input data type Any numerical type, Any numerical type
Output data type Same as Input #0

OUT := ROR(IN := 16#1000CAFE, 16);
Examples

(* OUT = 16#CAFE1000 *)

AND
I Logical AND if both Input #0 and Input #1 are BOOL, otherwise bitwise
Description AND.
Number of operands |2
Input data type Any but STRING, Any but STRING
Output data type Same as Inputs
OUT := TRUE AND FALSE; (* OUT = FALSE *)
Examples
OUT := 16#1234 AND 16#5678; (* OUT = 16#1230 *)
OR
Description Logical OR if both Input #0 and Input #1 are BOOL, otherwise bitwise OR.
Number of operands |2
Input data type Any but STRING, Any but STRING
Output data type Same as Inputs
OUT := TRUE OR FALSE; (* OUT = FALSE *)
Examples
OUT := 16#1234 OR 16#5678; (* OUT = 1l6#567C *)

[]
D1WWTEO6E o walvoil 7

zzzzzzzzzzz |IMoTion

PHC STUDIO

XOR

Description |>_(oogF|{caI XOR if both Input #0 and Input #1 are BOOL, otherwise bitwise
Number of operands |2
Input data type Any but STRING, Any but STRING
Output data type Same as Inputs

OUT := TRUE OR FALSE; (* OUT = TRUE ¥*)
Examples

OUT := 16#1234 OR 16#5678; (* OUT = 16#444C *)

NOT

Description Logical NOT if Input is BOOL, otherwise bitwise NOT.
Number of operands |1
Input data type Any but STRING
Output data type Same as Inputs

OUT := NOT FALSE; (* OUT = TRUE ¥*)
Examples

OUT := NOT 16#1234; (* OUT = 16#EDCB *)

Selection functions

SEL
Description Binary selection
Number of operands |3
Input data type BOOL, Any, Any
Output data type Same as selected Input

OUT := SEL(G := FALSE, INO := X, IN1 := 5);
Examples
(* OUT = X *)

MAX
Description Maximum value selection
Number of operands | 2, extensible
Input data type Any numerical type, Any numerical type, .., Any numerical type
Output data type Same as max Input
Examples OUT := MAX(-8, 120, -1000); (* OUT = 120 *)

MIN
Description Minimum value selection
Number of operands | 2, extensible
Input data type Any numerical type, Any numerical type, .., Any numerical type
Output data type Same as min Input
Examples OUT := MIN(-8, 120, -1000); (* OUT = -1000 *)

(]
172 <> walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

LIMIT
Description Limits Input #0 to be equal or more than Input#1, and equal or less than
Input #2.
Number of operands |3
Input data type Any numerical type, Any numerical type, Any numerical type
Output data type Same as Inputs
OUT := LIMIT(IN := 4, MN := 0, MX := 5); (* OUT = 4 *)
Examples OUT := LIMIT(IN := 88, MN := 0, MX := 5); (* OUT = 5 *)
OUT := LIMIT(IN := -1, MN := 0, MX := 5); (* OUT = 0 *)
MUX
Description Multiplexer. Selects one of N inputs depending on input K
Number of operands | 3, extensible
Input data type Any numerical type, Any numerical type, ..., Any numerical type
Output data type Same as selected Input
Examples OUT := MUX(0, A, B, C); (¥ OUT = A *)

Comparison functions
Comparison functions can be also used to compare strings if this feature is supported by target device.

GT
Description Greater than. Returns TRUE if Input #0 > Input #1, otherwise FALSE.
Number of operands |2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL
OUT := GT(0, 20); (* OUT = FALSE *)
Examples
OUT := GT(‘AZ’, ‘ABC’); (* OUT = TRUE *)
GE
Description Greater than or equal to. Returns TRUE if Input #0 >= Input #1, otherwise
FALSE.
Number of operands |2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL
OUT := GE(20, 20); (* OUT = TRUE *)
Examples
OUT := GE(‘AZ’, ‘ABC’); (* OUT = FALSE ¥*)

[]
D1WWTEO6E aowalvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

EQ
Description Equal to. Returns TRUE if Input #0 = Input #1, otherwise FALSE.
Number of operands | 2
Input data type Any, Any
Output data type BOOL
OUT := EQ(TRUE, FALSE); (* OUT = FALSE ¥*)
Examples
OUT := EQ(‘Az’", ‘ABC’); (* OUT = FALSE *)
LT
Description Less than. Returns TRUE if Input #0 < Input #1, otherwise FALSE.
Number of operands |2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL
OUT := LT(0, 20); (* OUT = TRUE *)
Examples
ouT := LT(‘AZ’", ‘ABC’); (* OUT = FALSE *)
LE
ST Less than or equal to. Returns TRUE if Input #0 <= Input #1, otherwise
Description FALSE.
Number of operands |2
Input data type Any but BOOL, Any but BOOL
Output data type BOOL
OUT := LE(20, 20); (* OUT = TRUE ¥*)
Examples
OUT := LE(‘AZ’, ‘ABC’); (* OUT = FALSE *)
NE
Description Not equal to. Returns TRUE if Input #0 !'= Input #1, otherwise FALSE.
Number of operands |2
Input data type Any, Any
Output data type BOOL
OUT := NE(TRUE, FALSE); (* OUT = TRUE *)
Examples
OUT := NE(‘Az’, “ABC’); (* OUT = TRUE *)

(]
17¢ @€ Wwalvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO
String functions

The availability of the following functions depends on the target device. Please refer to your hardware supplier

for details.
CONCAT
Description Character string concatenation
Number of operands |2
Input data type STRING, STRING
Output data type STRING
Examples OUT := CONCAT(‘AB’, ‘CD’); (* OUT = ‘ABCD’ *)
DELETE
Description Delete L characters of IN, beginning at the P-th character position
Number of operands |3
Input data type STRING, UINT, UINT
Output data type STRING
OUT := DELETE(IN := ‘ABXYC’, L := 2, P := 3);
Examples
(* OUT = ‘ABC’ *)
FIND
A Find the character position of the beginning of the first occurrence of IN2 in
Description IN1. If no occurrence of IN2 is found, then OUT := 0.
Number of operands |2
Input data type STRING, STRING
Output data type UINT
Examples OUT := FIND(IN1 := ‘ABCBC’, IN2 := ‘BC’); (* OUT = 2 *)
INSERT
Description Insert IN2 into IN1 after the P-th character position
Number of operands |3
Input data type STRING, STRING, UINT
Output data type STRING
OUT := INSERT(IN1 := ‘ABC’, IN2 := ‘XY’, P := 2);
Examples
(* OUT = ‘ABXYC’ *)
LEFT
Description Leftmost L characters of IN
Number of operands |2
Input data type STRING, UINT
Output data type STRING
Examples OUT := LEFT(IN := ‘ASTR’, L := 3); (* OUT = ‘AST’ *)

D1WWTEOG6E

o walvoil 7

zzzzzzzzzzz |IMoTion

PHC STUDIO

MID

Description L characters of IN, beginning at the P-th
Number of operands |3
Input data type STRING, UINT, UINT
Output data type STRING

OUT := MID(IN := ‘ASTR’, L := 2, P := 2);
Examples

(* OUT = ‘ST’ *)

REPLACE
Description Replace L characters of IN1 by IN2, starting at the P-th character position
Number of operands |4
Input data type STRING, STRING, UINT, UINT
Output data type STRING
E I OUT := REPLACE(IN1 := ‘ABCDE’, IN2 := ‘X', L := 2, P := 3); (*
Sl = OUT = ‘ABXE’ *)
RIGHT
Description Rightmost L characters of IN
Number of operands |2
Input data type STRING, UINT
Output data type STRING
Examples OUT := RIGHT(IN := ‘ASTR’, L := 3); (* OUT = ‘STR’ *)
TO_STRING

Description Conversion to STRING
Number of operands |1
Input data type Any numerical type
Output data type STRING

str := TO STRING(10.0); (* str = ‘10,0" *)
Examples

str := TO STRING(-1); (* str = '-1" *)

TO_STRINGFORMAT

Description Conversion to STRING, with format specifier

Number of operands |2

Input data type Any numerical type, STRING

Output data type STRING

Examples str := TO STRINGFORMAT (10, ‘%04d’); (* str = ‘0010’ %)

(]
173 <> walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

11.2 INSTRUCTION LIST (IL)

This section defines the semantics of the IL (Instruction List) language.

11.2.1 SYNTAX AND SEMANTICS
11.2.1.1 SYNTAX OF IL INSTRUCTIONS

IL code is composed of a sequence of instructions. Each instruction begins on a new line and contains an opera-
tor with optional modifiers, and, if necessary for the particular operation, one or more operands separated by
commas. Operands can be any of the data representations for literals and for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty lines can be inserted
between instructions.

Example
Let us parse a small piece of code:
START:
LD %IX1 (* Push button *)
ANDN %MX5.4 (* Not inhibited ¥*)

ST %QX2 (* Fan out *)
The elements making up each instruction are classified as follows:

Label [+or':'|eJ-:#i,gr] Operand Comment

START : LD $IX1 (* Push button *)
ANDN SMX5.4 (* Not inhibited ¥*)
ST QX2 (* Fan out *)

Semantics of IL instructions
- Accumulator

By accumulator a register is meant containing the value of the currently evaluated result.
- Operators

Unless otherwise specified, the semantics of the operators is

accumulator := accumulator OP operand
That is, the value of the accumulator is replaced by the result yielded by operation OP applied to the cur-
rent value of the accumulator itself, with respect to the operand. For instance, the instruction "anD $1x1” is
interpreted as
accumulator := accumulator AND %IX1
and the instruction “GT 21w10” will have the Boolean result TRUE if the current value of the accumulator is
greater than the value of input word 10, and the Boolean result FALSE otherwise:
accumulator := accumulator GT $IW10

- Modifiers
The modifier "N” indicates bitwise negation of the operand.

The left parenthesis modifier “(” indicates that evaluation of the operator must be deferred until a right pa-
renthesis operator “)” is encountered. The form of a parenthesized sequence of instructions is shown below,
referred to the instruction

accumulator := accumulator AND (%$MX1.3 OR $MX1.4)

The modifier “c” indicates that the associated instruction can be performed only if the value of the currently
evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with the “N” modifier).

[]
D1WWTEO6E o walvoil

nnnnnnnnnnn |IMoTion

PHC STUDIO

11.2.2 STANDARD OPERATORS

Standard operators with their allowed modifiers and operands are as listed below.

Operator Modifiers typzz:pApg:etspoeI:ec;.zzgyp e Semantics
D N Any, Any Sets the acz;::err::gzt.or equal to
- N Any, Any Stores the accll(.l)r:autliz;c?r into operand
S BOOL, BOOL Sets operand '_co TRUE if accumulator

iS TRUE.

R BOOL, BOOL Sets operand t(_) FALSE if accumulator
is TRUE.

AND N, (Any but REAL, Any but REAL Logical or bitwise AND

OR N, Any but REAL, Any but REAL Logical or bitwise OR

XOR N, (Any but REAL, Any but REAL Logical or bitwise x0OR

NOT Any but REAL Logical or bitwise NOT

ADD (Any but BOOL Addition

SUB (Any but BOOL Subtraction

MUL (Any but BOOL Multiplication

DIV (Any but BOOL Division

MOD (Any but BOOL Modulo-division

GT (Any but BOOL Comparison:

GE (Any but BOOL Comparison: =

EQ (Any but BOOL Comparison: =

NE (Any but BOOL Comparison:

LE (Any but BOOL Comparison:

LT (Any but BOOL Comparison:

JMP c, N Label Jumps to label

CAL c, N FB instance name Calls function block

RET c, Returns from calleq program, function,

or function block.
) Evaluates deferred operation.

180 e uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

11.2.3 CALLING FUNCTIONS AND FUNCTION BLOCKS
11.2.3.1 CALLING FUNCTIONS

Functions (as defined in the relevant section) are invoked by placing the function name in the operator field. This
invocation takes the following form:

LD 1

MUX 5, wvar0O, -6.5, 3.14

ST VvRES
Note that the first argument is not contained in the input list, but the accumulator is used as the first argu-
ment of the function. Additional arguments (starting with the 2"9), if required, are given in the operand field,
separated by commas, in the order of their declaration. For example, operator MUux in the table above takes 5
operands, the first of which is loaded into the accumulator, whereas the remaining 4 arguments are orderly
reported after the function name.
The following rules apply to function invocation.
1) Assignments to VAR INPUT arguments may be empty, constants, or variables.
2) Execution of a function ends upon reaching a RET instruction or the physical end of the function. When

this happens, the output variable of the function is copied into the accumulator.

Calling Function Blocks

Function blocks (as defined in the relevant section) can be invoked conditionally and unconditionally via the caAL
operator. This invocation takes the following form:

LD A

ADD 5

ST INSTS5.IN1
LD 3.141592
ST INSTS5.INZ2
CAL INSTS

LD INST5.0UT1
ST VvRES

LD INST5.0UT2

ST vVALID

This method of invocation is equivalent to a caL with an argument list, which contains only one variable with
the name of the FB instance.

Input arguments are passed to / output arguments are read from the FB instance through sT / LD operations
performed on operands taking the following form:

FBInstanceName.IO var

where
Keyword Description
FBInstanceName Name of the instance to be invoked.
10 var Input or output variable to be written / read.

[]
D1WWTEO6E o walvoil ::

nnnnnnnnnnn |IMoTion

PHC STUDIO

11.3 FUNCTION BLOCK DIAGRAM (FBD)

This section defines the semantics of the FBD (Function Block Diagram) language.

11.3.1 REPRESENTATION OF LINES AND BLOCKS

The graphic language elements are drawn using graphic or semi graphic elements, as shown in the table below.

No storage of data or association with data elements can be associated with the use of connectors; hence, to
avoid ambiguity, connectors cannot be given any identifier.

Feature Example

Lines —L

Line crossing with connection

Blocks with connecting lines and EELE (=8
unconnected pins

11.3.2 DIRECTION OF FLOW IN NETWORKS

A network is defined as a maximal set of interconnected graphic elements. A network label delimited on the right
by a colon (:) can be associated with each network or group of networks. The scope of a network and its label
is local to the program organization unit (POU) where the network is located.

Graphic languages are used to represent the flow of a conceptual quantity through one or more networks rep-
resenting a control plan. Namely, in the case of function block diagrams (FBD), the “Signal flow” is typically
used, analogous to the flow of signals between elements of a signal processing system. Signal flow in the FBD
language is from the output (right-hand) side of a function or function block to the input (left-hand) side of the
function or function block(s) so connected.

11.3.3 EVALUATION OF NETWORKS
11.3.3.1 ORDER OF EVALUATION OF NETWORKS

The order in which networks and their elements are evaluated is not necessarily the same as the order in which
they are labeled or displayed. When the body of a program organization unit (POU) consists of one or more net-
works, the results of network evaluation within the aforesaid body are functionally equivalent to the observance
of the following rules:

1) No element of a network is evaluated until the states of all of its inputs have been evaluated.

2) The evaluation of a network element is not complete until the states of all of its outputs have been evalu-
ated.

3) As stated when describing the FBD editor, a network number is automatically assigned to every network.
Within a program organization unit (POU), networks are evaluated according to the sequence of their
number: network N is evaluated before network n+1, unless otherwise specified by means of the execution
control elements.

(]
182 e walvoil D1WWTEO6E

nnnnnnnnnnn IMoTion

PHC STUDIO

11.3.3.2 COMBINATION OF ELEMENTS

Elements of the FBD language must be interconnected by signal flow lines.

Outputs of blocks shall not be connected together. In particular, the “wired-0R"” construct of the LD language is
not allowed, as an explicit Boolean “or” block is required.

Feedback

A feedback path is said to exist in a network when the output of a function or function block is used as the input
to a function or function block which precedes it in the network; the associated variable is called a feedback
variable.

Feedback paths can be utilized subject to the following rules:

1) Feedback variables must be initialized, and the initial value is used during the first evaluation of the net-

work. Look at the G1obal variables editor, the Local variables editor, or the Parameters editor to
know how to initialize the respective item.

2) Once the element with a feedback variable as output has been evaluated, the new value of the feedback
variable is used until the next evaluation of the element.

For instance, the Boolean variable rRuUN is the feedback variable in the example shown below.

AND
on &
]

Implicit loop
AND
o &
|

run

Explicit loop

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

11.3.4 EXECUTION CONTROL ELEMENTS
11.3.4.1 EN/ENO SIGNALS

Additional Boolean EN (Enable) input and Exo (Enable
declarations

Out) characterize PHC Studio blocks, according to the

EN ENO
VAR INPUT VAR OUTPUT
EN: BOOL := 1; ENO: BOOL;
END VAR END VAR

See the Modifying properties of blocks section to know how to add these pins to a block.

TON

When these variables are used, the execution of the operations defined by the block are controlled according to

the following rules:

1) If the value of EN is FALSE when the block is invoked, the operations defined by the function body are not
executed and the value of ENO is reset to FALSE by the programmable controller system.

2) Otherwise, the value of ENO is set to TRUE by the programmable controller system, and the operations

defined by the block body are executed.

11.3.4.2 JUMPS

Jumps are represented by a Boolean signal line terminated in a double arrowhead. The signal line for a jump
condition originates at a Boolean variable, or at a Boolean output of a function or function block. A transfer of
program control to the designated network label occurs when the Boolean value of the signal line is TRUE; thus,
the unconditional jump is a special case of the conditional jump.

The target of a jump is a network label within the program organization unit within which the jump occurs.

Symbol / Example

Explanation

Unconditional Jump

M i Labels, 3

Conditional Jump

Example: Jump Condition
Network

18« e uwalvoil

uuuuuuuuuuu IMoTion

D1WWTEOG6E

PHC STUDIO

11.3.4.3 CONDITIONAL RETURNS

- Conditional returns from functions and function blocks are implemented using a RETURN construction as shown
in the table below. Program execution is transferred back to the invoking entity when the Boolean input is
TRUE, and continues in the normal fashion when the Boolean input is FALSE.

- Unconditional returns are provided by the physical end of the function or function block.

Symbol / Example Explanation

X RET Conditional Return

@ Example: Return Condition
Network

11.4 LADDER DIAGRAM (LD)

This section defines the semantics of the LD (Ladder Diagram) language.

11.4.1 POWER RAILS

The LD network is delimited on the left side by a vertical line known as the left power rail, and on the right side
by a vertical line known as the right power rail. The right power rail may be explicit in the PHC Studio imple-
mentation and it is always shown.

The two power rails are always connected with an horizontal line named signal link. All LD elements should be
placed and connected to the signal link.

Description Symbol

Left power rail (with attached horizontal
link)

Right power rail (with attached horizontal
link)

Power rails connected by the signal link ‘ ‘

o walvoil s

DIWWTEOGE e e, maTion

PHC STUDIO

11.4.2 LINK ELEMENTS AND STATES

Link elements may be horizontal or vertical. The state of the link elements shall be denoted “on” or “0oFF”, cor-
responding to the literal Boolean values 1 or 0, respectively. The term link state shall be synonymous with the
term power flow.

The following properties apply to the link elements:
- The state of the left rail shall be considered on at all times. No state is defined for the right rail.

- A horizontal link element is indicated by a horizontal line. A horizontal link element transmits the state of the
element on its immediate left to the element on its immediate right.

- The vertical link element consists of a vertical line intersecting with one or more horizontal link elements on
each side. The state of the vertical link represents the inclusive or of the on states of the horizontal links on
its left side, that is, the state of the vertical link is:

OFF if the states of all the attached horizontal links to its left are OFF;
oN if the state of one or more of the attached horizontal links to its left is on.
- The state of the vertical link is copied to all of the attached horizontal links on its right.
- The state of the vertical link is not copied to any of the attached horizontal links on its left.

Description Symbol

Vertical link with attached _| |_
horizontal links

— F

11.4.3 CONTACTS

A contact is an element which imparts a state to the horizontal link on its right side which is equal to the Boolean
AND of the state of the horizontal link at its left side with an appropriate function of an associated Boolean input,
output, or memory variable.

A contact does not modify the value of the associated Boolean variable. Standard contact symbols are given in
the following table.

(]
18 @ walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

Name Description Symbol
The state of the left link is copied to the
Normally open right link if the state of the associated _| |_
contact Boolean variable is ON. Otherwise, the

state of the right link is OFF.

The state of the left link is copied to the

Normally closed right link if the state of the associated _|2f|_
contact Boolean variable is OFF. Otherwise, the

state of the right link is OFF.

The state of the right link is ON from one
evaluation of this element to the next when
a transition of the associated variable from
OFF to ON is sensed at the same time that -| F |—
the state of the left link is ON. The state
of the right link shall be OFF at all other
times.

Positive transition-sensing
contact

The state of the right link is ON from one
evaluation of this element to the next when
a transition of the associated variable from
ON to OFF is sensed at the same time that -| M |—
the state of the left link is ON. The state
of the right link shall be OFF at all other
times.

Negative transition-sensing
contact

11.4.4 COILS

A coil copies the state of the link on its left side to the link on its right side without modification, and stores an
appropriate function of the state or transition of the left link into the associated Boolean variable.

Standard coil symbols are shown in the following table.

Name Description Symbol
. The state of the left link is copied to the
coil associated Boolean variable. _{ -:'_

The inverse of the state of the left link
is copied to the associated Boolean
variable, that is, if the state of the _{/}_
left link is OFF, then the state of the

associated variable is ON, and vice
versa.

Negated coil

The associated Boolean variable is set to
the ON state when the left link is in the _{5}_
ON state, and remains set until reset by

a RESET coil.

The associated Boolean variable is reset
to the OFF state when the left link is in —{H;l—
the ON state, and remains reset until

set by a SET caoil.

The state of the associated Boolean
variable is ON from one evaluation

SET (latch) coil

RESET (unlatch) coil

Pos;t;leSitrr]'ancsc;?llon- of this element to the next when a —{ F'_]II—
9 transition of the left link from OFF to ON
is sensed.

The state of the associated Boolean
variable is ON from one evaluation

Eoe;l_:jatlve transition-sensing of this element to the next when a —{I"-l _:l—
transition of the left link from ON to OFF
is sensed.

[]
D1WWTEO6E o walvoil s,

nnnnnnnnnnn |IMoTion

PHC STUDIO

11.4.5 OPERATORS, FUNCTIONS AND FUNCTION BLOCKS

The representation of functions and function blocks in the LD language is similar to the one used for FBD. At
least one Boolean input and one Boolean output shall be shown on each block to allow for power flow through
the block as shown in the following figure.

timeExe1

sys0DM sysDO2
{

.

sysDE2

11.5 STRUCTURED TEXT (ST)

This section defines the semantics of the ST (Structured Text) language.

11.5.1 EXPRESSIONS

An expression is a construct which, when evaluated, yields a value corresponding to one of the data types listed
in the elementary data types table. PHC Studio does not set any constraint on the maximum length of expres-
sions.

Expressions are composed of operators and operands.

11.5.1.1 OPERANDS

An operand can be a literal, a variable, a function invocation, or another expression.

11.5.1.2 OPERATORS

Open the table of operators to see the list of all the operators supported by ST. The evaluation of an expression
consists of applying the operators to the operands in a sequence defined by the operator precedence rules.

11.5.1.3 OPERATOR PRECEDENCE RULES

Operators have different levels of precedence, as specified in the table of operators. The operator with high-
est precedence in an expression is applied first, followed by the operator of next lower precedence, etc., until
evaluation is complete. Operators of equal precedence are applied as written in the expression from left to right.

For example if A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then:
A+B-C*ABS (D)

yields -9, and:
(A+B-C) *ABS (D)

yields 0.

When an operator has two operands, the leftmost operand is evaluated first. For example, in the expression
SIN (A) *COS (B)

the expression sIN (2) is evaluated first, followed by cos (B), followed by evaluation of the product.

Functions are invoked as elements of expressions consisting of the function name followed by a parenthesized
list of arguments, as defined in the relevant section.

(]
183 > walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

11.5.1.4 OPERATORS OF THE ST LANGUAGE

Operation Symbol Precedence
Parenthesization (<expression>) HIGHEST
Function evaluation <fname> (<arglist>)
Negation Complement }
NOT
Exponentiation xx
*
Multiply Divide Modulo /
MOD
+
Add Subtract
Comparison <, >, <=, >=
Equality Inequality -
<>
Boolean aND AND
Boolean Exclusive OrR XOR
Boolean or OR LOWEST

11.5.2 STATEMENTS IN ST

All statements comply with the following rules:

- they are terminated by semicolons;

- unlike IL, a carriage return or new line character is treated the same as a space character;

- PHC Studio does not set any constraint on the maximum length of statements.

ST statements can be divided into classes, according to their semantics.

11.5.2.1 ASSIGNMENTS

Semantics

The assignment statement replaces the current value of a single or multi-element variable by the result of

evaluating an expression.

The assignment statement is also used to assign the value to be returned by a function, by placing the function
name to the left of an assignment operator in the body of the function declaration. The value returned by the
function is the result of the most recent evaluation of such an assignment.

Syntax
An assignment statement consists of a variable reference on the left-hand side, followed by the assignment
operator “:=", followed by the expression to be evaluated. For instance, the statement

A := B ;

would be used to replace the single data value of variable A by the current value of variable B if both were of

type INT.

D1WWTEOG6E

o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

Examples

a :=b ;
assignment

pCV := pCVv + 1 ;
assignment

c := SIN(x);
assignment with function invocation

FUNCTION SIMPLE FUN : REAL

variables declaration
function body

SIMPLE FUN := a * b - ¢c ;

END FUNCTION
assigning the output value to a function

11.5.2.2 FUNCTION AND FUNCTION BLOCK STATEMENTS

Semantics

- Functions are invoked as elements of expressions consisting of the function name followed by a parenthesized
list of arguments. Each argument can be a literal, a variable, or an arbitrarily complex expression.

- Function blocks are invoked by a statement consisting of the name of the function block instance followed by
a parenthesized list of arguments. Both invocation with formal argument list and with assignment of argu-
ments are supported.

- RETURN: function and function block control statements consist of the mechanisms for invoking function
blocks and for returning control to the invoking entity before the physical end of a function or function block.
The RETURN statement provides early exit from a function or a function block (e.g., as the result of the evalu-
ation of an IF statement).

(]
190 <> walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

Syntax
1) Function:

dst var := function name(argl, arg2 , ... , argN);

2) Function block with formal argument list:

instance name (var inl := argl ,
var in2 := arg2 ,
14
var inN := argN);

3) Function block with assignment of arguments:

instance name.var inl := argl;

instance name.var inN := argN;
instance name () ;
4) Function and function block control statement:

RETURN;

Examples
CMD TMR(IN := $%IX5,
PT:= 300) ;
FB invocation with formal argument list:
IN := $IX5 ;
PT:= 300 ;

CMD TMR () ;
FB invocation with assignment of arguments:

a := CMD_TMR.Q;
FB output usage:

RETURN ;
early exit from function or function block.

11.5.2.3 SELECTION STATEMENTS

Semantics

Selection statements include the 1F and CASE statements. A selection statement selects one (or a group) of its
component statements for execution based on a specified condition.

- IF: the 1F statement specifies that a group of statements is to be executed only if the associated Boolean
expression evaluates to the value TrRUE. If the condition is false, then either no statement is to be executed,
or the statement group following the ELSE keyword (or the ELSTF keyword if its associated Boolean condition
is true) is executed.

- CASE: the cask statement consists of an expression which evaluates to a variable of type DINT (the “selec-
tor”), and a list of statement groups, each group being labeled by one or more integer or ranges of integer
values, as applicable. It specifies that the first group of statements, one of whose ranges contains the com-
puted value of the selector, is to be executed. If the value of the selector does not occur in a range of any
case, the statement sequence following the keyword ELSE (if it occurs in the CASE statement) is executed.
Otherwise, none of the statement sequences is executed.

PHC Studio does not set any constraint on the maximum allowed number of selections in CASE statements.

[]
D1WWTEO6E o walvoil i

nnnnnnnnnnn |IMoTion

PHC STUDIO

Syntax
Note that square brackets include optional code, while braces include repeatable portions of code.
1) IF:

IF expressionl THEN

stat list

[{ ELSIF expression? THEN
stat list }]

ELSE

stat list

END IF ;
2) CASE:

CASE expressionl OF
intv [{, intv }]
stat list
{ intv [{, intv }]
stat list }
[ELSE
stat list]
END CASE ;
intv being either a constant or an interval: a or a..b

Examples

IF statement:

IF d 0.0 THEN
0
ELSIF d = 0.0 THEN

nRoots

nRoots := 1 ;
xl = -b / (2.0 * a) ;
ELSE
nRoots := 2 ;
x1 := (-b + SQRT(d)) / (2.0 * a) ;
x2 := (b - SQRT(d)) / (2.0 * a) ;
END IF ;
CASE sta_tement:
CASE tw OF
1, 5:
display := oven temp ;
2:
display := motor speed ;
3:
display := gross_tare;
4, 6..10:
display := status(tw - 4) ;

(]
192 e walvoil D1WWTEO6E

uuuuuuuuuuu [MoTionN

PHC STUDIO

ELSE

display := 0;
tw _error := 1;
END CASE ;

11.5.2.4 ITERATION STATEMENTS

Semantics

Iteration statements specify that the group of associated statements are executed repeatedly. The FOR state-
ment is used if the number of iterations can be determined in advance; otherwise, the WHILE or REPEAT con-
structs are used.

- FOR: the FOR statement indicates that a statement sequence is repeatedly executed, up to the END FOR key-
word, while a progression of values is assigned to the FOR loop control variable. The control variable, initial
value, and final value are expressions of the same integer type (e.g., SINT, INT, or DINT) and cannot be al-
tered by any of the repeated statements. The FOR statement increments the control variable up or down from
an initial value to a final value in increments determined by the value of an expression; this value defaults
to 1. The test for the termination condition is made at the beginning of each iteration, so that the statement
sequence is not executed if the initial value exceeds the final value.

- WHILE: the wHILE statement causes the sequence of statements up to the END WHILE keyword to be ex-
ecuted repeatedly until the associated Boolean expression is false. If the expression is initially false, then the
group of statements is not executed at all.

- REPEAT: the REPEAT statement causes the sequence of statements up to the unTIL keyword to be executed
repeatedly (and at least once) until the associated Boolean condition is true.

- EXIT: the EXIT statement is used to terminate iterations before the termination condition is satisfied. When
the EXIT statement is located within nested iterative constructs, exit is from the innermost loop in which
the EXIT is located, that is, control passes to the next statement after the first loop terminator (END_FOR,
END WHILE, or END REPEAT) following the EXIT statement.

Note: the wHILE and REPEAT statements cannot be used to achieve interprocess synchronization,

for example as a “wait loop” with an externally determined termination condition. The SFC
elements defined must be used for this purpose.

Syntax
Note that square brackets include optional code, while braces include repeatable portions of code.
1) FOR:
FOR control var := init val TO end val [BY increm val] DO
stat list
END FOR ;
2) WHILE:
WHILE expression DO
stat list
END WHILE ;
3) REPEAT:
REPEAT
stat list

UNTIL expression

END REPEAT ;

[]
D1WWTEO6E o walvoil i

nnnnnnnnnnn |IMoTion

PHC STUDIO

Examples
FOR statement:

J o= 101 ;
FOR i := 1 TO 100 BY 2 DO
IF arrvals[i] = 57 THEN

J o= 1i ;
EXIT ;
END IF ;
END FOR ;
WHILE s;atement:
joi=1
WHILE j <=100 AND arrvals[i] <> 57 DO
J o= 3+ 2 ;
END WHILE ;
REPEAT;tatement:
Jj o= -1 ;
REPEAT
Jo=3 + 2 ;
UNTIL j = 101 AND arrvals[i] = 57
END REPEAT ;

11.6 SEQUENTIAL FUNCTION CHART (SFC)

This section defines Sequential Function Chart (SFC) elements to structure the internal organization of a PLC
program organization unit (POU), written in one of the languages defined in this standard, for the purpose of
performing sequential control functions. The definitions in this section are derived from IEC 848, with the neces-
sary changes to convert the representations from a standard documentation to a set of execution control ele-
ments for a PLC program organization unit.

Since SFC elements require storage of state information, the only program organization units which can be
structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire program organization unit
is so partitioned. If no SFC partitioning is given for a program organization unit, the entire program organization
unit is considered to be a single action which executes under the control of the invoking entity.

SFC elements

The SFC elements provide a means of partitioning a PLC program organization unit into a set of steps and transi-
tions interconnected by directed links. Associated with each step is a set of actions, and with each transition is
associated a transition condition.

(]
19« e walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

11.6.1 STEPS
11.6.1.1 DEFINITION

A step represents a situation where the behavior of a program organization unit (POU) with respect to its inputs
and outputs follows a set of rules defined by the associated actions of the step. A step is either active or inac-
tive. At any given moment, the state of the program organization unit is defined by the set of active steps and
the values of its internal and output variables.

A step is represented graphically by a block containing a step name in the form of an identifier. The directed
link(s) into the step can be represented graphically by a vertical line attached to the top of the step. The directed
link(s) out of the step can be represented by a vertical line attached to the bottom of the step.

Representation Description
t
StepName Step
(graphical representation with direct
links)
]

PHC Studio does not set any constraint on the maximum number of steps per SFC.

Step flag

The step flag (active or inactive state of a step) can be represented by the logic value of a Boolean variable
*** x, where *** is the step name. This Boolean variable has the value TRUE when the corresponding step is
active, and FALSE when it is inactive. The scope of step names and step flags is local to the program organiza-
tion unit where the steps appear.

Representation Description
Step flag
Step Name_x = TRUE when Step Name x is active = FALSE
otherwise

Users cannot assign a value directly to a step state.
11.6.1.2 INITIAL STEP

The initial state of the program organization unit is represented by the initial values of its internal and output
variables, and by its set of initial steps, i.e., the steps which are initially active. Each SFC network, or its textual
equivalent, has exactly one initial step. An initial step can be drawn graphically with double lines for the borders,
as shown below. For system initialization, the default initial state is FALSE for ordinary steps and TRUE for initial
steps.

PHC Studio cannot compile an SFC network not containing exactly one initial step.

Representation Description

init Initial step
(graphical representation with direct

links)

[]
D1WWTEO6E o walvoil s

nnnnnnnnnnn |IMoTion

PHC STUDIO

11.6.1.3 ACTIONS

An action can be:

- a collection of instructions in the IL language;

- a collection of networks in the FBD language;

- a collection of rungs in the LD language;

- a collection of statements in the ST language;

- a sequential function chart (SFC) organized as defined in this section.

Zero or more actions can be associated with each step. Actions are declared via one of the textual structuring
elements listed in the following table.

Structuring element Description

STEP StepName :
(* Step body *) Step (textual form)
END STEP

INITIAL STEP StepName :
(* Step body *) Initial step (textual form)
END STEP

Such a structuring element exists in the 15 file for every step having at least one associated action.

11.6.1.4 ACTION QUALIFIERS

The time when an action associated to a step is executed depends on its action qualifier.
PHC Studio implements the following action qualifiers.

Qualifier Description Meaning

The action is executed as long as the step

N Non-stored (null qualifier). remains active.

The action is executed only once per step
P Pulse. activation, regardless of the number of cycles
the step remains active.

If a step has zero associated actions, then it is considered as having a WAI T function, that is, waiting for a suc-
cessor transition condition to become true.

11.6.1.5 JUMPS

Direct links flow only downwards. Therefore, if you want to return to a upper step from a lower one, you can-
not draw a logical wire from the latter to the former. A special type of block exists, called Jump, which lets you
implement such a transition.

A Jump block is logically equivalent to a step, as they have to always be separated by a transition. The only ef-
fect of a Jump is to activate the step flag of the preceding step and to activate the flag of the step it points to.

Representation Description

(logical link to the destination step)

(]
19s <> walvoil D1WWTEO6E

uuuuuuuuuuu IMoTion

PHC STUDIO

11.6.2 TRANSITIONS
11.6.2.1 DEFINITION

A transition represents the condition whereby control passes from one or more steps preceding the transition to
one or more successor steps along the corresponding directed link. The transition is represented by a small grey
square across the vertical directed link.

The direction of evolution following the directed links is from the bottom of the predecessor step(s) to the top
of the successor step(s).

11.6.2.2 TRANSITION CONDITION

Each transition has an associated transition condition which is the result of the evaluation of a single Boolean
expression. A transition condition which is always true is represented by the keyword TRUE, whereas a transition
condition always false is symbolized by the keyword FALSE.

A transition condition can be associated with a transition by one of the following means:

Representation Description

TRUE By placing the appropriate Boolean constant {TRUE, FALSE}
adjacent to the vertical directed link.

By declaring a Boolean variable, whose value determines whether

“arMame St
or not the transition is cleared.

By writing a piece of code, in any of the languages supported by
ProgMame PHC Studio, except for SFC. The result of the evaluation of such a
code determines the transition condition.

The scope of a transition name is local to the program organization unit (POU) where the transition is located.

11.6.3 RULES OF EVOLUTION

Introduction

The initial situation of a SFC network is characterized by the initial step which is in the active state upon initiali-
zation of the program or function block containing the network.

Evolutions of the active states of steps take place along the directed links when caused by the clearing of one
or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding transition symbol by di-
rected links, are active. The clearing of a transition occurs when the transition is enabled and when the associ-
ated transition condition is true.

The clearing of a transition causes the deactivation (or “resetting”) of all the immediately preceding steps con-
nected to the corresponding transition symbol by directed links, followed by the activation of all the immediately
following steps.

The alternation Step/Transition and Transition/Step is always maintained in SFC element connections, that is:
- two steps are never directly linked; they are always separated by a transition;
- two transitions are never directly linked; they are always separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time, the sequences which
these steps belong to are called simultaneous sequences. After their simultaneous activation, the evolution of
each of these sequences becomes independent. In order to emphasize the special nature of such constructs, the
divergence and convergence of simultaneous sequences is indicated by a double horizontal line.

The clearing time of a transition may theoretically be considered as short as one may wish, but it can never be
zero. In practice, the clearing time will be imposed by the PLC implementation: several transitions which can
be cleared simultaneously will be cleared simultaneously, within the timing constraints of the particular PLC

[]
D1WWTEO6E o walvoil v

nnnnnnnnnnn |IMoTion

PHC STUDIO

implementation and the priority constraints defined in the sequence evolution table. For the same reason, the
duration of a step activity can never be considered to be zero. Testing of the successor transition condition(s)
of an active step shall not be performed until the effects of the step activation have propagated throughout the

program organization unit where the step is declared.

D1WWTEOG6E

198 e uwalvoil

uuuuuuuuu [MoTionN

PHC STUDIO

Sequence evolution table

This table defines the syntax and semantics of the allowed combinations of steps and transitions.

Example Rule
53
Normal transition
[« An evolution from step s3 to step s4 takes place
if and only if step s3 is in the active state and
i the transition condition c is TRUE.

Divergent transition

An evolution takes place from s5 to s6 if and
only if S5 is active and the transition condition e
is TRUE, or from s5 to s8 only if S5 is active and
f iS TRUE and e is FALSE.

O |
=

Convergent transition

An evolution takes place from s7 to s10 only
if s7 is active and the transition condition h is
TRUE, or from s9 to s10 only if s9 is active and

510 j iS TRUE.
511
Simultaneous divergent transition
An evolution takes place from s11 to s12,
S14,... only if s11 is active and the transition
° condition b associated to the common transition
[is TRUE. After the simultaneous activation of
512 514 s12, s14, etc., the evolution of each sequence
proceeds independently.
7 T
1 L
513 515
Simultaneous convergent transition
I An evolution takes place from s13, s15,... to
[]a s16 only if all steps above and connected to

516

the double horizontal line are active and the
transition condition d associated to the common
transition is TRUE.

D1WWTEOG6E

o walvoil 1

FLUID POWER E[MOTION

PHC STUDIO

Examples

Invalid scheme

Equivalent allowed scheme

Note

|

S30

TRUE

s3

TRUE

Expected behavior: an
evolution takes place from
530 to s33 if a is FALSE and d
is TRUE.

The scheme in the leftmost
column is invalid because
conditions d and TRUE are
directly linked.

Expected behavior: an
evolution takes place from
532 to s31 if ¢ is FALSE and d
iS TRUE.

The scheme in the

leftmost column is invalid
because direct links flow
only downwards. Upward
transitions can be performed
via jump blocks.

11.6.4

PHC Studio provides some control flags for SFC program or function blocks.

SFC CONTROL FLAGS

To enable this feature, please refer to paragraph 4.6.2.

Those flags are:

- <POU name> HOLD SFC (type BOOL);

- <POU name> RESET SFC

(type BOOL) .

Where <pPOU name> means the name of the SFC POU (program or function block).
For example, if the SFC POU is named Main, the control flags will be named Main HOLD SFC and Main RE-

SET SFC.

Another couple of actions is available for every SFC action, which also are contained in a SFC POU.

For example, if the above program Ma 71 contains a SFC action named Execute, the control flags of this action
will be Main Execute HOLD SFC and Main Execute RESET SFC.

These flags functionalities are described in details on next paragraphs.

200 & Walvoil

nnnnnnnnnnn IMoTion

D1WWTEOG6E

PHC STUDIO

11.6.4.1 HOLD FLAG

Following the main characteristics of the <POU name> HOLD srcC flag:
- default value is FALSE;

- when set to TRUE, the SFC block, which is referred to (the one with the same name as <PoOU name>), it is kept
in the current status (hold) and no code is executed;

- when the flag is set back to FALSE, the SFC block execution is recovered from exactly the same point in which
was set to hold, trough <POU name> HOLD SFC := TRUE.

11.6.4.2 RESET FLAG

Following the main characteristics of the <POU name> RESET SFC flag:
- default value is FALSE;

- when set to TRUE, the SFC block, which is referred to (the one with the same name as <POU name>), it is
brought back to the initial state, that is the execution state of the init action.

- this is an auto-reset flag, which means that if it is set to TRUE his own state becomes FALSE after his reset
action has been executed. It is therefore not necessary to bring the <POU name> RESET SFC value back to
FALSE.

11.6.4.3 FLAGS VISIBILITY

The <POU name> HOLD_ SFC and <POU name> RESET_ SFC flags are automatically generated from the code com-
piler and they belongs to the local variables of the POU which are referred to.

PHC Studio does not show this flags in the variables list of the POU; they are hidden but in any case they can
be used everywhere within the code.

11.6.5 CHECK A SFC POU FROM OTHER PROGRAMS

To allow the managing of a SFC POU from other programs PHC Studio provides the following functionalities:
- The compiler automatically generates the <POU name> RESET SFC and <POU name> HOLD_ SFC flags.

- If the SFC POU is a function block, the user has the possibility to declare, as vAR INPUT and type BOOL, both
flags having the name of the SFC POU control flags.

- If the SFC POU is a program, the user has the possibility to declare, as vAR GLOBAL and type BOOL, both flags
having the name of the SFC POU control flags.

- In both cases above, PHC Studio compiler will use the variables declared among the VAR INPUT or VAR GLOB-
AL ones and not those automatically generated (therefore they will be not generated).

Using these techniques, user then can manage the working state of the SFC POU from other POU using the 1N-
PUT variables of the SFC POU.

[]
D1WWTEO6E o walvoil -o:

nnnnnnnnnnn |IMoTion

PHC STUDIO

Example
FUNCTION BLOCK test
VAR INPUT

test RESET SFC : BOOL; (* Control flag explicitly declared *)
END VAR

END_ FUNCTION BLOCK
PROGRAM Main
VAR

block : test; (* SFC block instance *)
END VAR

(* Reset SFC block state *)
block.test RESET SFC := TRUE;

END PROGRAM
11.6.5.1 SFC MACRO LIBRARY
PHC Studio makes available to user a library, called SFCControl.pl], to allow the manage of the SFC states
trough commands instead of variable settings.

This library is composed by macros usable only in ST language.

11.6.5.2 USAGE EXAMPLE OF THE CONTROL FLAGS

Following are some example of control flags usage, assuming the SFC POU is named Main:
- Hold (freeze):

Main HOLD SFC := TRUE;
- Restart from hold state:
MainiHOLDisFC = FALSE;

- Restart form initial state of a SFC block in hold state:
Main_RESET_SFC := TRUE;

MainiHOLDisFC := FALSE;
- Reset to initial state and instant restart of SFC block:

Main RESET SFC := TRUE; (* automatic reset from compiler *).

(]
202 e walvoil D1WWTEO6E

uuuuuuuuuuu [MoTionN

PHC STUDIO

11.7 PHC STUDIO LANGUAGE EXTENSIONS

PHC Studio features a few extensions to the IEC 61131-3 standard, in order to further enrich the language and
to adapt to different coding styles.

11.7.1 MACROS

PHC Studio implements macros in the same way a C programming language pre-processor does.
Macros can be defined using the following syntax:

MACRO <macro name>
PAR MACRO
<parameter list>
END PAR
<macro body>

END MACRO

Note that the parameter list may eventually be empty, thus distinguishing between object-like macros, which do
not take parameters, and function-like macros, which do take parameters.

A concrete example of macro definition is the following, which takes two bytes and composes a 16-bit word:
MACRO MAKEWORD
PAR MACRO
lobyte;
hibyte;
END PAR
{ CODE:ST }
lobyte + SHL(TO UINT(hibyte), 8)

END_MACRO

Whenever the macro name appears in the source code, it is replaced (along with the actual parameter list, in
case of function-like macros) with the macro body. For example, given the definition of the macro MAKEWORD and
the following Structured Text code fragment:

w := MAKEWORD(bl, b2);
the macro pre-processor expands it to
w := bl + SHL(TO UINT(b2), 8);

11.7.2 POINTERS

Pointers are a special kind of variables which act as a reference to another variable (the pointed variable). The
value of a pointer is, in fact, the address of the pointed variable; in order to access the data stored at the ad-
dress pointed to, pointers can be dereferenced.

Pointer declaration requires the same syntax used in variable declaration, where the type name is the type name
of the pointed variable preceded by a e sign:

VAR
<pointer name> : (@<pointed variable type name>;
END VAR

For example, t]e declaration of a pointer to a REAL variable shall be as follows:
VAR

px : @REAL;
END VAR

[]
D1WWTEO6E o walvoil o

nnnnnnnnnnn |IMoTion

PHC STUDIO

A pointer can be assigned with another pointer or with an address. A special operator, ADR, is available to re-
trieve the address of a variable.

pPxX = py; (* px and py are pointers to REAL (that is, vari-
ables of type @QREAL) ¥*)
px := ADR(x) (* x is a variable of type REAL *)
px = ?Xx (* ? 1is an alternative notation for ADR *)
The @ operator is used to dereference a pointer, hence to access the pointed variable.
px := ADR(x);
@px := 3.141592; (* the approximate value of pi is assigned to x *)
pn := ADR(n);
n := @pn + 1; (* n is incremented by 1 *)

Beware that careless use of pointers is potentially dangerous: indeed, pointers can point to any arbitrary loca-
tion, which can cause undesirable effects.

11.7.3 WAITING STATEMENT

PHC Studio implements a WAI TING statement that can be used in ST code as following example:

WAITING <condition> DO

<code to be executed waiting for condition becomes true>

END WAITING;

Until the condition is not verified, the code will be executed (not as in a loop cycle but returning to caller in every
execution).

The WAITING statement can be used only if the associated project option is enabled (see paragraph 4.6.2 for
more details).

200 @ Walvoil

uuuuuuuuuuu marian D1WWTEO6E

12. ERRORS REFERENCE

12.1 COMPILE TIME ERROR MESSAGES

ERROR

CODE SHORT DESCRIPTION EXPLANATION
A4097 Object not found The obJe;t mc!lcated (va_rlab]e or function block) has not
been defined in the application.
The size (in bits) requested by the indicated data type
A4098 Unsupported data type isn't supported by the target system.
The total allocation space requested by all local variables
A4099 Auto vars space exhausted exceeds the space available on the target system.
The total allocation space requested by all local retentive
A4100 Retentive vars space exhausted variables exceeds the space available on the target
system.
The total allocation space requested by all local bit
A4101 Bit vars space exhausted (boolean) variables exceeds the space available on the
target system.
. . The variable indicated is associated with an index that is
A4102 Invalid ++ in data block not available in the relative data block.
The variable indicated is associated with a data block
A4103 Data block not found that doesn't exist (isn't defined) in the target system.
The total size of code used for POU (programs, functions
A4104 Code space exhausted and function blocks) exceed the space available on the
target system.
A4105 Invalid bit offset The var|at_)le |nd_|cated is as_souated with a bit index that
is not available in the relative data block.
A4106 Image variable requested Error code superseded.
A4107 Target function not found The function indicated isn't available on the target
system.
A4108 Base object not found Thg |_nf:||cated |nst§nce refers to a function block
definition non defined.
. . The indicated variable is associated with a data type
A4109 Invalid base object type (including function block definition) that isn't defined.
A4110 Invalid data type '(Ia':it-;tdata type used in the variable definition doesn't
A4111 Invalid operand type The operand type is not allowed for the current operator.
The indicated function block is called by more than one
A4112 Function block shares global data | task but uses global variables with process image. For
and is used by more tasks this reason the compiler isn't able to refer to the proper
image variable for each instance of the function block.
A4113 Temporary variables allocation Internal compiler error.
error
Ad1l4 Embedded functlons do not
support arrays as input variables
Too many parameters input to
A4115 embedded function
A4116 Incremental build failed, perform

a full build command

D1WWTEOG6E

o walvoil s

PHC STUDIO

PHC STUDIO

ERROR
CODE

SHORT DESCRIPTION

EXPLANATION

A4117

Less then 10% of free data

A4118

Less then 10% of free retain data

A4119

Less then 10% of free bit data

A4120

Variable exceeds data block space

A4121

Element not found

A4123

Invalid access to private member

A4129

Not a structured type

A4130

Not a function block instance

A4131

Incompatible external declaration

A4133

Not a variable

A4134

Index exceeds array size

A4135

Invalid index data type

A4136

Missing index(es)

A4137

Function block instance required

A4138

Simple variable required

A4139

Too many indexes

A4140

Not a structure instance

A4141

Not an array

A4143

Not a pointer

A4144

Double pointer indirection not
allowed

A4145

To be implemented

A4146

Bit datatype not allowed

A4147

Unable to calculate variable offset

A4148

Complex variables cannot have
process image

A4149

Cannot use directly represented
variables with process image in
function blocks (not implemented)

A4150

Function block instance not
allowed

A4151

Structure not allowed

A4152

16-bit variables must be aligned
to a 16-bit boundary

A4153

32-bit variables must be aligned
to a 32-bit boundary

A4154

Temporary string variable
allocation error. Instruction shall
be split.

A4155

Ext/aux auto vars space
exhausted

A4156

Ambiguous enum value,
<enum># prefix required

B0OOO1

Data block not found

The variable indicated is associated with a data block
that doesn't exist (isn't defined) in the target system.

200 € Walvoil

D1WWTEOG6E

ERROR
CODE SHORT DESCRIPTION EXPLANATION
) The indicated file can't be created due to a file system
B0002 Error on create file error or to a missing source file.
C0001 Parser not initialized Internal compiler error.
C0002 Invalid token Invalid word for the current language syntax
C0003 Invalid file specification Internal compiler error.
C0004 Can't open file The indicated ﬁ_Ie can t be opgned due to a file system
error or to a missing source file.
C0005 Parser table error Internal compiler error.
C0006 Parser non specified Internal compiler error.
) The indicated file is truncated or the syntax is
C0007 Unexpected end of file incomplete.
The indicated word can't be used for declaration
€0009 Reserved keyword purposes because is a keyword of the language.
C0010 Invalid element The indicated word isn't a valid one for the language
syntax.
C0011 Aborted by user
C0032 Too many parameters in macro
call
C0033 Invalid number of parameters in
macro call
C0034 Too many macro calls nested
C4097 Invalid variable type The data type indicated isn't allowed.
C4098 Invalid location prefix :I;h('a ac_1dr_ess string of the indicated variable isn't correct,
/o' missing.
. . . The address string of the indicated variable isn't correct,
C4099 Invalid location specification the data access type indication isn't 'I', 'Q' or 'M'
. . The address string of the indicated variable isn't correct,
C4100 | Invalid location type the data type indication isn't ‘X', 'B', 'W', 'D', 'R' or 'L".
C4101 Invalid location index specification The;ddre§s§tnngofthe|ndmaUK1vanaMe|sntconecL
the index isn't correct.
C4102 Duplicate variable name The name of the |nd|cat¢d varla!ble has already been
used for some other project object.
c4103 Only 0 admitted here The compiler uses only arrays zero-index based
The dimension of the array isn't indicated in the correct
C4104 Invalid array dimension way (e.g.: contains invalid characters, negative numbers
etc.).
C4105 Constant not initialized Every constant need to have an initial value.
C4106 Invalid string size
C4107 Initialization exceeding string size
C4108 Invalid repetition in initialization
C4109 Invalid data type for initialization
. The indicated label has already been defined in the
C4353 Duplicate label current POU (program, function or function block).
C4354 Constant not admitted The _operatlon mdlcate_d doesn t_allow to use constants
(typically store or assign operations).
C4355 Address of explicit constant not

defined

D1WWTEOG6E

o walvoil 7

PHC STUDIO

PHC STUDIO

ERROR
CODE

SHORT DESCRIPTION

EXPLANATION

C4356

Maximum number of subscripts
exceeded

C4358

Invalid array base

C4359

Invalid operand

C4609

Invalid binary constant

A constant value with 2# prefix must contain only binary
digits (0 or 1).

C4610

Invalid octal constant

A constant value with 8# prefix must contain only octal
digits (between 0 and 7).

C4611

Invalid hexadecimal constant

A constant value with 16# prefix must contain only
hexadecimal digits (between 0 and 9 and between A and
F).

C4612

Invalid decimal constant

A decimal constant must contain only digits between 0
and 9, a leading sign + or -, a decimal separator '.' Or a
exponent indicator 'e' or 'E".

C4613

Invalid time constant

A constant value with t# prefix must contain a time
indication in decimal notation and a time unit between
'ms, 's' or 'm'.

C4614

Invalid constant string

C4864

Duplicate function name

The indicated function name has already been used for
another application object.

C4865

Invalid function type

The data type returned by the indicated function is not
correct.

C5120

Duplicate program name

The indicated program name has already been used for
another application object.

C5376

Duplicate function block name

The indicated function block name has already been
used for another application object.

C5632

Invalid pragma

C5633

Invalid pragma value

C5889

Duplicate macro name

C5890

Duplicate macro parameter name

C6144

Invalid resource definition: two or
more tasks have the same ID

C16385

Invalid init value

C16386

Invalid initialization definition

C16387

Invalid array delimiters (brackets)

C16388

Empty init value

C16389

Empty array init value

C16390

Invalid repeated init value

C16391

Not implemented

C16392

Missing array delimiters
(brackets)

C16393

Missing comma

C16394

Not implemented

C16395

Invalid (incomplete) string

208 @ Walvoil

o

D1WWTEOG6E

ERROR
oo SHORT DESCRIPTION EXPLANATION
The memory space needed for parameter's database
, exceeds the space available on the target system. If
D12289 | Can't allocate database possible, remove unused parameter's records, menus
etc.
The memory space needed for parameter's database
, exceeds the space available on the target system. If
D12290 | Can't allocate database record possible, remove unused parameter's records, menus
etc.
D12291 | Database variable not found Internal compiler error.
D12292 Invalid expression or expression The database expression that has the result indicated
syntax error isn't correct, contains syntax errors or invalid operators.
The database expression that has the result indicated
contains a parameter (as operand) that isn't the same to
which the expression refers to. The expression can use
only PLC variables (including the variables associated
with parameters) and the value of the parameter that
D12293 Invalid parameter reference in is exchanged at the moment. For example: pDELTA
expression = DELTA / pRATIO + pOFFSET is correct because
the parameter exchanged is DELTA and it's the only
parameter value used in the expression. The expression:
pDELTA = DELTA / pRATIO + OFFSET isn't correct
because the parameter OFFSET used in the expression
isn't currently exchanged
The database expression that has the result indicated
D12294 | Recursive expression calls itself by means of some operand used that contains
the current expression result.
The database expression that has the result indicated
D12295 | Unresolved variable in expression | uses an operand that isn't defined in the whole PLC
project.
D12296 [Unresolved expression result Internal compiler error.
.) The parameter that is the result of the expression has a
D12297 | Invalid result type for expression data type invalid (such as enumerative) or not defined.
D12298 | Invalid operand in expression The data_base_ expression that has the result indicated
uses an invalid operand.
Invalid variable type for The variable that is the result of the expression has a
D12299 . - . . .
expression data type invalid (such as enumerative) or not defined.
D12300 | Assembler error Internal compiler error.
The code space needed for the expression is exhausted.
D12301 | Can't allocate database code Is necessary to remove some expressions from the
parameter's database.
D12302 | Invalid operation in expression The data_base_ expression that has the result indicated
uses an invalid operand.
The indicated FBD or LD network contains a connection
F1025 Invalid network error (the errors are normally indicated by red
connections).
F1026 Unconnected pin The indicated block (o_perator, function, contact or coil)
has an unconnected pin.
Invalid connection (incomplete, .
F1027 more than a source etc.) Internal compiler error.
F1028 More than one network per block The network indicated contains more networks of blocks

and variables not connected between them.

D1WWTEOG6E

o walvoil 0

zzzzzzzzzzz |IMoTion

PHC STUDIO

PHC STUDIO

ERROR
CODE SHORT DESCRIPTION EXPLANATION
. . The compiler is not able to find an univocal way to
F1029 Ambiguous network evaluation establish the order of blocks execution.
F1030 Temporary variables allocation Internal compiler error.
error
F1031 Inconsistent network The_ network indicated doesn't have input or output
variables.
F1032 Inyalld object connected to power
rail
Invalid use of pin negation (ADR
F1033 operator does not allow negated
input
Invalid use of pin negation
F1034 (SIZEOF operator does not allow
negated input
. The number of operands is not correct for the operand or
G0001 Invalid operand number the function indicated.
G0002 Variable not defined The variable has not been defined in the local or global
context.
) The label indicated for the JMP operand isn't defined in
G0003 Label not defined the current POU (program, function or function block).
. . The indicated instance refers to a function block not
G0004 Function block not defined defined in the whole project.
. . The indicated instance refers to an object not defined in
G0005 Reference to object not defined the whole project.
. The operation indicated doesn't allow to use constants
G0006 Constant not admitted (typically store or assign operations).
The total size of code used for POU (programs, functions
G0007 Code buffer overflow and function blocks) exceed the space available on the
target system.
The access made to the indicated variable is not allowed.
G0008 Invalid access to variable An attempt to write a read-only variable or to read a
write-only variable has been made.
G0009 Program not found The_ indicated program doesn't exist in the current
project.
Program already assigned to a The indicated program has been assigned to more than
G0010
task one task of the target system.
G0011 Can't allocate code buffer There isn't enough memory on the PC to create the
image of the code of the target system.
G0012 Function not defined The_ indicated function doesn't exist in the current
project.
Cyclic declaration of function The indicated function block call itself directly or by
G0013 .
blocks means of other functions.
The external variable declaration of the current function
. . block doesn't match with the global variable definition it
G0014 Incompatible external declaration refers to (the one with the same name). Typically is the
case of a type mismatch.
G0015 Accumulator extension
The external variable doesn't refer to any of the global
G0016 External variable not found variables of the project (e.g.: there isn't a global variable
with the same name).

210 e Walvoil

D1WWTEOG6E

Egg:ER SHORT DESCRIPTION EXPLANATION
G0017 Program is not assigned to a task I::tigggitsefsfer&?ram hasn't been assigned to a task in
G0018 Task not found in resources The indicated task isn't defined in the target system.
There aren't task definitions for the target system. The
G0019 No task defined for the application | target definition file (*.TAR) is missing or incomplete.
Contact the target system vendor.
Far data allowed only for load/ Huge memory access isn't aIIowegI for function blocks,
G0020 store operations in PROGRAMs only for programs (error code valid only for some target
system with NEAR/FAR data access).
e e e e e
Function block with process image
G0022 variables can't be used in event
tasks
G0024 Accumulator undefined
G0025 Invalid index
G0026 Only constant index allowed
G0027 ;Ikraé;gails;:lf’erence to the address of
G0028 Less then 10% of free code
G0029 Index exceeds array size
ooao | Access to aray o5 scalr
G0031 It\lhuen'\l/t;errs?zfeindexes not matching
G0032 ?uu;gg:—g:jnsmnal variables not
G0033 Invalid data type
G0034 Invalid operand type
G0035 Assembler error
G0036 Aborted by user
G0037 Element not defined
G0038 Cyclic declaration of structures
G0039 Cyclic declaration of typedefs
G0040 Unresolved definition of typedef
G0041 Exceeding dimensions in typedef
G0042 itirg::)rl]zltgaatgocate compiler
G0043 EF?RDSRGENERATOR INTERNAL
G0044 Real data not supported
G0045 Long real data not supported
G0046 Long data not supported

D1WWTEOG6E

o walvoil :::

PHC STUDIO

PHC STUDIO

ERROR
CODE

G0047 Operation not implemented
G0048 Invalid operator
G0049 Invalid operator value

SHORT DESCRIPTION EXPLANATION

G0050 Unbalanced parentheses

G0051 Data conversion

G0052 To be implemented

G0053 Invalid index data type

G0054 Negation without condition
G0055 Operation not allowed on boolean

Negation of a non-boolean

G0056
operand

G0057 Boolean operand required

Floating point parameter not

GO058 allowed

G0059 Operand extension
G0060 Division by zero
G0061 Illegal comparison

Function block must be

G0062 instanciated

G0063 String operand not allowed

G0064 Operation not allowed on pointers

Destination may be too small to

G0065 store current result
Cannot use a function block
containing external variables with

G0066 . ;
process image in more than one
task

G0067 Canr_mqt load the address of an
explicit constant

G0068 ertmg a r(_aal value into an
integer variable

G0069 Cannot use complex variables in

functions. Not implemented

G0070 Signed/unsigned mismatch

Conversion data types mismatch,

G0071 possible loss of data

G0072 Implicit typ_e conversion of
boolean to integer

G0073 Implicit type conversion of
boolean to real

G0074 Implicit type conversion of integer
to boolean

G0075 Implicit type conversion of integer
to boolean

G0076 Implicit type conversion of real to

boolean

(]
212 e walvoil D1WWTEO6E

PHC STUDIO

ERROR
CODE SHORT DESCRIPTION EXPLANATION
G0077 _ImpI|C|t type conversion of real to
integer
G0078 Ar|thm_et|c operations require
numerical operands
G0079 Bitwise logical operations require

bitstring/integer operands

Comparison operations require
G0080 elementary (i.e., not user-
defined) operands

Cannot take the address of a bit

G0081 .
variable

G0082 Writ_ing a sigped value into an
unsigned variable

G0083 Writing an_unsigned value into a
signed variable

G0084 Implicit conye_rsion from single to
double precision

G0085 Implicit conversion from double to

single precision

G0086 Function parameter extension

G0087 Casting to the same type has no

effects

G0088 Function parameters wrong
number

G0089 Embedded target function not

found

G0090 Recursive type declaration

Wrong initial value. Signed/

G0091 unsigned mismatch

Wrong initial value. Conversion
G0092 data types mismatch, possible
loss of data

G0093 String will be truncated
G009%4 Init value type mismatch

G0095 Improper init value
G0096 Init value object not found
G0097 Invalid assignment to pointer

The operator indicated is not allowed for the indicated

G0513 Invalid operator .
operation.

The operator indicated isn't supported by the current

G0514 Operation not implemented
target system.

The target system in use doesn't support floating point
operations.

G0515 Real data not supported

[]
D1WWTEO6E o walvoil @

PHC STUDIO

ERROR
CODE

SHORT DESCRIPTION

EXPLANATION

GO0516

Destination may be too small to
store current result

The variable destination of the store/assignment
operation has a data type smaller than the one of the
accumulator. Data may be lost in the operation. For
example, if the accumulator contains 340 and the
destination operand is of SINT type, the assignment
operation will loose data. If the operation is under the
programmer's control an appropriate type conversion
function (TO_SINT, TO_INT, TO_DINT etc.) can be used
to eliminate the warning message.

G0517

Long data not supported

The target system in use doesn't support long data
operations.

G0518

Accumulator extension

The variable destination of the store/assignment
operation has a data type bigger than the one of the
accumulator. An extension operation has been performed
automatically by the compiler. To eliminate this warning
message use the appropriate type conversion function
(TO_SINT, TO_INT, TO_DINT etc.).

G0519

Assembler error

Internal compiler error.

G0520

Negation allowed only on boolean

The 'N' modifier used for some IL operators (LDN, STN,
ANDN etc.) can't be used with operators having type
other than boolean.

G0521

Operation allowed with boolean
types

The IL operator indicated (typically 'S' or 'R") can't be
used when the accumulator has a type other than BOOL.

G0522

Instruction has constant result

The indicated operation has a result that is constant (ex.
multiply by 0, AND with FALSE).

G0523

Instruction is a NOP

The operation indicated has no influence on the value of
the accumulator (ex. multiply by 1, AND with TRUE).

G0524

Unbalanced parentheses

The number of opened parentheses doesn't match with
the number of the closed parentheses in the indicated
code block.

G0525

Operation not allowed on boolean

The indicated operation can't be performed on boolean
operands (ex. the arithmetic operations).

G0526

Can't perform modulo with long
values

The current target system doesn't allow the modulo
operation with long data types.

G0527

Division by 0

The indicated division operation has the constant value 0
as denominator.

G0528

Negation without condition

The indicated operation (JMP or RET) has the negation
modifier 'N' without the conditional evaluation modifier
'C'. Use JMPCN instead of JMPN or RETCN instead of
RETN.

G0529

Initial value not defined

Internal compiler error.

G0530

Invalid initial value

The initial value of the variable isn't indicated correctly.

G0531

Invalid accumulator type

The accumulator has a data type not allowed for the
indicated operation (ex. MUX operator with REAL
accumulator).

G0532

Code generator internal error

Internal compiler error.

G0533

Invalid operator value

The operator has a value not acceptable for the indicated
operation (ex. SHL with constant value bigger than 32).

G0534

Accumulator undefined

The operation is performed without a previously loaded
value into the accumulator.

214 e Walvoil

o

D1WWTEOG6E

ERROR
CODE SHORT DESCRIPTION EXPLANATION
The constant index value used in the indicated
G0535 Invalid index expression is too big for the array dimension. See the
array declaration string.
The use of variable as index for the indicated array is not
G0536 Only constant index allowed supported by the compiler. This error is typically issued
with boolean (bit) arrays.
Indexing of boolean constants not The use of variable as index for the indicated array is not
G0537 9 supported by the compiler. This error is typically issued
allowed . .
with boolean (bit) arrays.
G0538 Return not allowed from programs | The RET operator isn't allowed in PROGRAM blocks.
A function block can't be invoked directly with a CAL
G0539 Function block must be instruction. It must be instantiated before its use eg.
instantiated must be a variable with data type corresponding to the
function block instead.
Operation not allowed with real The indicated operation can't be executed on REAL data
G0540 t pes types. Instructions of this kind are logical and bitwise
yp operations.
This warning informs that the data type of the
accumulator has been automatically converted by the
G0541 Accumulator conversion compiler. This operation is typically executed when
the accumulator and the operand used in a arithmetic
operation have different data types.
Some target-specific implementations with software
Real accumulator must be floating point emulation require that each store
G0542 : .
reloaded operation shall be preceded by a new load operation or a
arithmetic sequence.
Some target-specific implementations with software
floating point emulation require that when the floating
G0543 Real accumulator not stored point stack has been loaded, the same shall be unloaded
at the end of arithmetic sequence.
G0544 Long real data not supported The Io_ng real data type LREAL isn't supported by the
compiler.
G0769 Invalid operator The op_erator indicated is not allowed for the indicated
operation.
G0770 Operation not implemented The operator indicated isn't supported by the current
target system.
G0771 Assembler error Internal compiler error.
G0772 Long real data not supported The ang real data type LREAL isn't supported by the
compiler.
G0773 Long data not supported The long data type LINT isn't supported by the compiler.
G0774 Negation of a non-boolean The negation modifier 'N' can't be used in operations
parameter with data types different than boolean.
G0775 Operation not allowed on boolean The indicated operat!on can t be per_formed on boolean
operands (ex. the arithmetic operations).
The variable destination of the store/assignment
operation has a data type bigger than the one of the
. accumulator. An extension operation has been performed
G0776 Accumulator extension : . o . .
automatically by the compiler. To eliminate this warning
message use the appropriate type conversion function
(TO_SINT, TO_INT, TO_DINT etc.).
G0777 Accumulator undefined The operation is performed without a previously loaded

value into the accumulator.

D1WWTEOG6E

o walvoil ::s

zzzzzzzzzzz |IMoTion

PHC STUDIO

PHC STUDIO

ERROR
CODE

SHORT DESCRIPTION

EXPLANATION

G0778

Destination may be too small to
store current result

The variable destination of the store/assignment
operation has a data type smaller than the one of the
accumulator. Data may be lost in the operation. For
example, if the accumulator contains 340 and the
destination operand is of SINT type, the assignment
operation will loose data. If the operation is under the
programmer's control an appropriate type conversion
function (TO_SINT, TO_INT, TO_DINT etc.) can be used
to eliminate the warning message.

G0779

Division by zero

The indicated division operation has the constant value 0
as denominator.

G0780

Operation allowed on real
parameters only

The indicated operation can't be executed on REAL data
types. Instructions of this kind are logical and bitwise
operations.

G0781

Illegal comparison

The indicated comparison operation is executed between
non homogeneous data types.

G0782

Negation without condition

The indicated operation (JMP or RET) has the negation
modifier 'N' without the conditional evaluation modifier
'C'. Use JMPCN instead of JMPN or RETCN instead of
RETN.

G0783

Boolean parameter required

The IL operator indicated (typically 'S' or 'R") can't be
used when the accumulator has a type other than BOOL.

G0784

Operand extension

The data type of the operand has been extended to
the data type of the accumulator. Then the operation is
executed. The operand extension take place whenever
the operand data type is smaller than the accumulator
data type.

G0785

Does not support float
accumulator

The accumulator has REAL data type and it's not allowed
for the indicated operation (typically MUX operation).

G0786

Does not support boolean
accumulator

The accumulator has boolean data type and isn't allowed
for the indicated operation (ex. MUX operator).

G0787

Comparison of unsigned type and
signed type

The compare operation indicated is performed using
operators that have signed and unsigned data type.
Undesired or uncontrolled result may be possible.

G0788

Illegal conversion

Internal compiler error.

G0789

Conversion may result in loss or
corruption of data

Error code not used.

G0790

Illegal negation of a real
parameter

Error code not used.

G0791

Writing a real value into an
integer var / param

The parameter passed to the function is of REAL type
instead of an integer data type as required by the
function input variables definition.

G0792

Writing an integer value into a
real var / param

The parameter passed to the function is of an integer
data type instead of the REAL type as required by the
function input variables definition.

G0793

Writing a signed value into an
unsigned var / param

The assignment operation is performed on an unsigned
data type variable but the accumulator data type has a
signed data type. Undesired result may be possible.

G0794

Writing an unsigned value into a
signed var / param

The assignment operation is performed on an unsigned
data type variable but the accumulator data type has a
signed data type. Undesired result may be possible.

216 @ Walvoil

nnnnnnnnn IMoTion

D1WWTEOG6E

ERROR
CODE SHORT DESCRIPTION EXPLANATION
The number of opened parentheses doesn't match with
G0795 Unbalanced parentheses the number of the closed parentheses in the indicated
code block.
G0796 Error while extending parameters | Internal compiler error.
The constant index value used in the indicated
G0797 Invalid index expression is too big for the array dimension. See the
array declaration string.
Using a boolean index to access The indicated array access is incorrect because the index
G0798 -
an element of array variable used has a boolean data type.
G0799 Return not allowed from programs | The RET operator isn't allowed in PROGRAM blocks.
G0800 Boolean accumulator required The indicated SEL operator requires that the accumulator
has the boolean data type.
The selection performed by MUX and SEL operators shall
G0801 Operators have mismatching type | be done between elements that have homogeneous data
types.
A function block can't be invoked directly with a CAL
G0802 Function block must be instruction. It must be instantiated before its use eg.
instantiated must be a variable with data type corresponding to the
function block instead.
G1537 Using a boolean index to access
an element of array
G1538 Does not support boolean
accumulator
G1539 Does not support float
accumulator
G1540 Error while extending operand(s)
G1541 Wr|t_|ng a 5|gr_1ed value into an
unsigned variable
G1542 Writing an_unsigned value into a
signed variable
G1543 Writing a re_:al value into an
integer variable
G1544 Writing an integer value into a
real variable
G1545 Converting a string into a number
G1546 Converting a number into a string
G1547 FPU stack full
G1548 FPU stack empty
G1549 FPU stack size error
G1550 Illega_l access to variable through
function
Illegal reference to address
G1551 of variable accessible through
function
G1552 Invalid access through function
G1553 Two variables with the same
handle
G1554 Invalid index for variable

accessible through function

D1WWTEOG6E

o walvoil 27

PHC STUDIO

PHC STUDIO

ERROR
CODE

SHORT DESCRIPTION

EXPLANATION

G1555

Invalid instruction with non-empty
FPU stack

G1556

Function result of type string
requires store to variable

G8193

Type definition of unknown data
type

G8194

Type definition has exceeding
array dimensions

G8195

Cyclic definition of data type

G8196

Double pointers are not supported

G8197

No enumerative elements

G8199

Invalid or undefined initialization
constant

G10241

Too many initializers for variable

G10242

Too less initializers for variable

G10243

Constant without init values

P2048

Can't open parameters file

The source file for parameters (with PPC extension) can't
be opened because of is missing or is locked by the PC's
file system.

P2049

Symbol table file not created

The symbol allocation file (with SYM extension) can't be
written because of disk write protection or insufficient
disk space.

P2050

Can't create parameters file

The parameters file (with PAR extension) can't be
written because of disk write protection or insufficient
disk space.

P2051

Can't create directory

The directory for the new project can't be created. The
problem arises when there is a disk write protection or
when the new directory indicated for the project is more
than one level deep form an existing disk directory. The
compiler creates only one new directory level (the one
with the name of the project) starting from an existing
directory.

P2052

Can't open source project

The source project indicated for creating the new project
doesn't exist, is incomplete or is locked by the file
system.

P2053

Save project error

The new project can't be saved due to disk write
protection, non existing destination directory or file
system lock.

P2054

Generic file error

A non specific error occurred during file operations.

P2055

Can't copy file

The indicated file can't be copied because of missing
source file, disk write protection or destination file
existing and protected.

P2056

Can't save file

The indicated file can't be saved because of disk write
protection or destination file existing and protected.

P2057

Object already exist in project

The indicated object (variable, function, function block or
program) is contained in the last loaded library but there
is already another object with the same name in the
current project.

213 € Walvoil

o

D1WWTEOG6E

PHC STUDIO

ERROR

CODE SHORT DESCRIPTION EXPLANATION

The indicated library file doesn't exits or can't be opened

P2058 Can't open library file due to file system locking.

P2059 Listing file not created

Cannot create PLC application
binary file

P2060

P2061 Can't open template project

Support for processor isn't

P2062 available

P2063 Less than 10% of free code

P2064 Less than 10% of free data

P2065 Less than 10% of free retain data
P2066 Less than 10% of free bit data
P2067 Task not found in resources
P2068 No task defined for the application

Project is in the old PPJ format.
P2069 It will be saved in the actual PPJIX
format

P2070 Can't open auxiliary source file
P2071 Can't read file

Application name is longer than
10 characters: only the first 10

P2072 characters will be downloaded into
the target

P2073 Downloadable source code file is
not password-protected

P2074 D.ownlogdable PLC application
binary file not created

P2075 Less than 10% of free ext/aux
data
Project private copy of this

P2076 library was missing and has been

replaced with a new copy of the
library (from the original path)

Cannot load library! Project
private copy of this library was
P2077 missing and the original path to
the library is invalid: library has
been dropped

PLC variables export file not
created

Debug symbols package (for
P2079 following download to the target
device) not created

Source code package (for
P2080 following download to the target
device) not created

P2081 Invalid task definition

P2078

[]
D1WWTEO6E o walvoil 2

PHC STUDIO

ERROR
CODE

SHORT DESCRIPTION

EXPLANATION

P2083

Invalid or incoherent task period

P2084

Broken library link

51281

Generic ST error

51282

Too many expressions nested

51283

No iteration to exit from

51284

Missing END_IF

51285

Invalid ST statement

51286

Invalid assignment

51287

Missing;

51288

Invalid expression

51289

Invalid expression or missing DO

51290

Missing END_WHILE

S1291

Missing END_FOR

51292

Missing END_REPEAT

51293

Invalid expression or missing
THEN

51294

Invalid expression or missing TO

S1295

Invalid expression or missing BY

S1296

Invalid statement or missing
UNTIL

S1297

Invalid assignment, := expected

51298

Invalid address expression

S1299

Invalid size expression

S1300

Function return value ignored

S1301

Invalid parameter passing

S1302

Function parameter not defined

51303

Useless expression

S1304

Unbalanced parentheses

S1305

Unknown function

S1306

Invalid function parameter(s)
specification

S1307

Function parameter doesn't exist

51308

Multiple assignment not allowed
(in accordance with IEC 61131-3)

S1309

ST preprocessor buffer overflow

S1310

Function block invocation of a
non-function block instance

S1311

Missing END_WAITING

S1312

Syntax error

S1537

Generic SFC error

S1538

Initial step missing

S1539

Output connection missing

220 e Walvoil

D1WWTEOG6E

ERROR

CODE SHORT DESCRIPTION EXPLANATION
S1540 The outpqt_pm must be connected
to a transition
Every output pin of a transition
S1541 must be connected to a step/jump
block
S1542 Transition expected
S1543 Step or jump expected
S1544 Could not find the associate
program code
S1545 Could not find the condition code
S1546 Unknown-type transition
S1547 Invalid destination
Duplicates action. Same SFC
S1548 action cannot be used in more
than one step
The communication with the target system failed
because there is non answer from the system itself.
N . More common causes of this problem are wrong cable
T8193 Communication timeout connection, invalid target address in communication
settings, invalid settings of communication parameters
(such as baud rate), target system failure.
T8194 Incompatible target version Error code not used.
The target system image file (with IMG extension)
18195 Invalid code file is |n_/aI|d or co_rrupted: Try t_o uploa|<|j and cregte new
version of the image file using the "Communication
Upload image file" menu option.
The image file (with IMG extension) contains a data
block that has an index greater than the largest index
18196 Invalid data block index supporteq by the ta_rget sy_stem._ Try to lljlpload anc_l crgate
new version of the image file using the "Communication
Upload image file" menu option. If the problem persist,
contact the target system vendor.
T8197 Invalid target information address | Internal compiler error.
The target system was not able to complete the flash
T8198 Flash erase failure erasure procedure. Contact the target system vendor for
details.
The target system was not able to complete the flash
T8199 Code write failure programming procedure. Contact the target system
vendor for details.
The compiler tried to communicate with the target
system but the communication channel is not available.
T8200 Communication device unavailable | If the problem persist and there are other applications
that communicate with the target system, deactivate the
communication on the other applications and try again.
T8201 Invalid function index Internal compiler error.
The address of the parameter's database memory area
Invalid database information of the target system isn't correct or valid. Try to upload
T8202 . - . .
address and create new version of the image file using the
"Communication Upload image file" menu option.
T8203 Invalid target information

D1WWTEOG6E

o walvoil 2

nnnnnnnnnnn |IMoTion

PHC STUDIO

PHC STUDIO

ERROR
CODE SHORT DESCRIPTION EXPLANATION

T8204 Rebuild required

T8205 Invalid task
Application-level communication
protocol error: PLC run-time

T8206 was not able to understand the
received command

T8207 Not implemented

T8209 No room for source file on the
target

18210 Error while uplogdmg source code
from target device

18211 No room for debug symbols on
the target

T8212 Memory read error

T8213 Memory write error
Not enough space available on

T8214 the target device for the PLC
application binary

222 <> walvoil D1WWTEO6E

Notes

[]
D1WWTEO6E o walvoil ‘223

nnnnnnnnnnn IMoTion

A

Innovation - Continuity - Integration
It is Power

D1IWWTEO6E
2n edition May 2021

owalvoil Whuydmo

	Warning
	Contents
	Introduction
	Overview
	Using the environment
	Managing projects
	Managing project elements
	Editing the source code
	Compiling
	Launching the application
	Debugging
	PHC studio reference
	Language reference
	Errors reference

